Publication:
Acoustic superradiance from a Bose-Einstein condensate vortex with a self-consistent background density profile

dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorGüven, Kaan
dc.contributor.kuauthorDereli, Tekin
dc.contributor.kuauthorDemirkaya, Betül
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:12:51Z
dc.date.issued2020
dc.description.abstractThe propagation of acoustic perturbations in the velocity potential of a Bose-Einstein condensate (BEC) behave like minimally coupled massless scalar fields in a curved (1 + 1) dimensional Lorentzian space-time, where their propagation is governed by the Klein-Gordon wave equation. For linearized perturbations, this geometric picture can still apply in the presence of a single vortex state of the BEC. Thus far, the amplified scattering of axisymmetric perturbations from a vortex, as a manifestation of the acoustic superradiance, has been investigated by assuming a constant background density of the condensate. This paper addresses the validity of this approximation within the same theoretical workframe, by employing a self-consistent density profile that is obtained by solving the Gross-Pitaevskii equation for an unbound BEC and an approximation to the numerical solution is used throughout the paper. The resulting radial density profile around the vortex implies a radially varying speed of sound, which modifies the entire propagation dynamics as well as the loci of the event horizon and the ergosphere. We investigate the superradiance in temporal domain and, through an independent asymptotic formulation, in the spectral domain. The main conclusions are that the self-consistent density profile remedies the overshoot of the superradiance dynamics temporally and that the spectral profile of the superradiance differs significantly in the vortex-scaled low frequency regime between the constant density and self-consistent density formulations.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume95
dc.identifier.doi10.1088/1402-4896/ab7652
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02618
dc.identifier.issn0031-8949
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85082382051
dc.identifier.urihttps://doi.org/10.1088/1402-4896/ab7652
dc.keywordsBlack holes
dc.keywordsAnalogs
dc.keywordsAnalogue gravity
dc.keywordsAcoustic fields
dc.keywordsBose-Einstein condensation
dc.keywordsRadiation
dc.keywordsStatistical mechanics
dc.keywordsSuperradiance
dc.keywordsVortex flow
dc.language.isoeng
dc.publisherInstitute of Physics (IOP) Publishing
dc.relation.grantnoNA
dc.relation.ispartofPhysica Scripta
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9257
dc.subjectPhysics
dc.titleAcoustic superradiance from a Bose-Einstein condensate vortex with a self-consistent background density profile
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorDemirkaya, Betül
local.contributor.kuauthorDereli, Dündar Tekin
local.contributor.kuauthorGüven, Kaan
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Physics
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9257.pdf
Size:
338.55 KB
Format:
Adobe Portable Document Format