Publication:
Evaluating the performance of a novel double-threaded dynamic stabilization system: a finite element study

dc.contributor.coauthorSavasci, Melihcan
dc.contributor.departmentKUH (Koç University Hospital)
dc.contributor.departmentKUTTAM (Koç University Research Center for Translational Medicine)
dc.contributor.kuauthorAkgün, Mehmet Yiğit
dc.contributor.kuauthorDurmuş, Nazenin
dc.contributor.kuauthorGünerbüyük, Caner
dc.contributor.kuauthorÖktenoğlu, Bekir Tunç
dc.contributor.kuauthorAteş, Özkan
dc.contributor.kuauthorÖzer, Ali Fahir
dc.contributor.schoolcollegeinstituteKUH (KOÇ UNIVERSITY HOSPITAL)
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-12-31T08:21:03Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractObjective To evaluate the biomechanical performance of a novel dual-cord and dual-spacer posterior dynamic stabilization system compared to a conventional single-threaded construct.MethodsA validated finite element (FE) model of the L1-S1 lumbar spine was developed. Posterior dynamic stabilization was simulated at the L4-L5 segment using two systems: a traditional polyethylene terephthalate (PET) cord with polycarbonate urethane (PCU) spacer (single-threaded), and a dual PET cord-spacer construct. Both systems were analyzed under full range of motion (ROM) loading and physiological loads using Abaqus software to simulate stress distribution and motion.ResultsThe dual-cord system enhanced segmental stability at L4-5 by approximately 22% while preserving adjacent level mobility within normal physiological limits. Peak stress levels on implant components increased marginally but remained within safe thresholds.ConclusionThe dual-cord dynamic stabilization system demonstrates improved biomechanical stability with minimal adjacent segment compromise. These results support its potential for reducing long-term mechanical failure risks in lumbar stabilization.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGreen Submitted, gold
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1186/s13018-025-06130-2
dc.identifier.embargoNo
dc.identifier.issn1749-799X
dc.identifier.issue1
dc.identifier.pubmed41107886
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105019114160
dc.identifier.urihttps://doi.org/10.1186/s13018-025-06130-2
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31563
dc.identifier.volume20
dc.identifier.wos001597060400002
dc.keywordsDynamic stabilization
dc.keywordsFinite element analysis
dc.keywordsSpinal implants
dc.keywordsRange of motion
dc.keywordsAdjacent segment degeneration
dc.language.isoeng
dc.publisherBMC
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofJournal of Orthopaedic Surgery and Research
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectOrthopedics
dc.titleEvaluating the performance of a novel double-threaded dynamic stabilization system: a finite element study
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameAkgün
person.familyNameDurmuş
person.familyNameGünerbüyük
person.familyNameÖktenoğlu
person.familyNameAteş
person.familyNameÖzer
person.givenNameMehmet Yiğit
person.givenNameNazenin
person.givenNameCaner
person.givenNameBekir Tunç
person.givenNameÖzkan
person.givenNameAli Fahir
relation.isOrgUnitOfPublicationf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isOrgUnitOfPublication91bbe15d-017f-446b-b102-ce755523d939
relation.isOrgUnitOfPublication.latestForDiscoveryf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isParentOrgUnitOfPublication055775c9-9efe-43ec-814f-f6d771fa6dee
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery055775c9-9efe-43ec-814f-f6d771fa6dee

Files