Publication:
Emotion dependent domain adaptation for speech driven affective facial feature synthesis

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorSadiq, Rizwan
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.researchcenterKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid34503
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T13:18:49Z
dc.date.issued2022
dc.description.abstractAlthough speech driven facial animation has been studied extensively in the literature, works focusing on the affective content of the speech are limited. This is mostly due to the scarcity of affective audio-visual data. In this article, we improve the affective facial animation using domain adaptation by partially reducing the data scarcity. We first define a domain adaptation to map affective and neutral speech representations to a common latent space in which cross-domain bias is smaller. Then the domain adaptation is used to augment affective representations for each emotion category, including angry, disgust, fear, happy, sad, surprise, and neutral, so that we can better train emotion-dependent deep audio-to-visual (A2V) mapping models. Based on the emotion-dependent deep A2V models, the proposed affective facial synthesis system is realized in two stages: first, speech emotion recognition extracts soft emotion category likelihoods for the utterances; then a soft fusion of the emotion-dependent A2V mapping outputs form the affective facial synthesis. Experimental evaluations are performed on the SAVEE audio-visual dataset. The proposed models are assessed with objective and subjective evaluations. The proposed affective A2V system achieves significant MSE loss improvements in comparison to the recent literature. Furthermore, the resulting facial animations of the proposed system are preferred over the baseline animations in the subjective evaluations.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue3
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Council of Turkey (TÜBİTAK)
dc.description.versionAuthor's final manuscript
dc.description.volume13
dc.formatpdf
dc.identifier.doi10.1109/TAFFC.2020.3008456
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR04005
dc.identifier.issn1949-3045
dc.identifier.linkhttps://doi.org/10.1109/TAFFC.2020.3008456
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85089294841
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3042
dc.identifier.wos849263500027
dc.keywordsFacial animation
dc.keywordsHidden Markov models
dc.keywordsAdaptation models
dc.keywordsSpeech recognition
dc.keywordsFeature extraction
dc.keywordsData models
dc.keywordsSpeech driven facial animation
dc.keywordsAffective facial animation
dc.keywordsDomain adaptation
dc.keywordsTransfer learning
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno2.17E+109
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10891
dc.sourceIEEE Transactions on Affective Computing
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectCybernetics
dc.titleEmotion dependent domain adaptation for speech driven affective facial feature synthesis
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-2715-2368
local.contributor.authoridN/A
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorSadiq, Rizwan
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10891.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format