Publication:
Online nonlinear classification for high-dimensional data

dc.contributor.coauthorVanlı, N. Denizcan
dc.contributor.coauthorÖzkan, Hüseyin
dc.contributor.coauthorKozat, Süleyman S.
dc.contributor.kuauthorDelibalta, İbrahim
dc.contributor.kuprofilePhD Student
dc.contributor.schoolcollegeinstituteGraduate School of Social Sciences and Humanities
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:06:45Z
dc.date.issued2015
dc.description.abstractWe study online binary classification problem under the empirical zero-one loss function. We introduce a novel randomized classification algorithm based on highly dynamic hierarchical models that partition the feature space. Our approach jointly and sequentially learns the partitioning of the feature space, the optimal classifier among all doubly exponential number of classifiers defined by the tree, and the individual region classifiers in order to directly minimize the cumulative loss. Although we adapt the entire hierarchical model to minimize a global loss function, the computational complexity of the introduced algorithm scales linearly with the dimensionality of the feature space and the depth of the tree. Furthermore, our algorithm can be applied to any streaming data without requiring a training phase or prior information, hence processes data on-the-fly and then discards it, which makes the introduced algorithm significantly appealing for applications involving "big data". We evaluate the performance of the introduced algorithm over different real data sets.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/BigDataCongress.2015.109
dc.identifier.isbn978-1-4673-7278-7
dc.identifier.issn2379-7703
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84959487670
dc.identifier.urihttp://dx.doi.org/10.1109/BigDataCongress.2015.109
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9030
dc.identifier.wos380443700099
dc.keywordsOnline classification
dc.keywordsRandomized algorithms
dc.keywordsNonlinear classification
dc.keywordsHigh-dimensional data
dc.languageEnglish
dc.publisherIEEE
dc.source2015 IEEE International Congress on Big Data - Bigdata Congress 2015
dc.subjectComputer science
dc.subjectTheory methods
dc.subjectEngineering
dc.subjectElectrical electronic engineering
dc.titleOnline nonlinear classification for high-dimensional data
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7296-6301
local.contributor.kuauthorDelibalta, İbrahim

Files