Publication:
An information maximization based blind source separation approach for dependent and independent sources

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErdoğan, Alper Tunga
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid41624
dc.date.accessioned2024-11-09T23:26:59Z
dc.date.issued2022
dc.description.abstractWe introduce a new information maximization (infomax) approach for the blind source separation problem. The proposed framework provides an information-theoretic perspective for determinant maximization-based structured matrix factorization methods such as nonnegative and polytopic matrix factorization. For this purpose, we use an alternative joint entropy measure based on the log-determinant of covariance, which we refer to as log-determinant (LD) entropy. The corresponding (LD) mutual information between two vectors reflects a level of their correlation. We pose the infomax BSS criterion as the maximization of the LD-mutual information between the input and output of the separator under the constraint that the output vectors lie in a presumed domain set. In contrast to the ICA infomax approach, the proposed information maximization approach can separate both dependent and independent sources. Furthermore, we can provide a finite sample guarantee for the perfect separation condition in the noiseless case.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.sponsorshipKUIS AI Lab This work is partially supported by a funding provided by the KUIS AI Lab.
dc.identifier.doi10.1109/ICASSP43922.2022.9746099
dc.identifier.isbn978-1-6654-0540-9
dc.identifier.issn1520-6149
dc.identifier.scopus2-s2.0-85131243919
dc.identifier.urihttp://dx.doi.org/10.1109/ICASSP43922.2022.9746099
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11644
dc.identifier.wos864187904133
dc.keywordsBlind source separation
dc.keywordsInformation maximization
dc.keywordsDependent source separation
dc.keywordsPolytopic matrix factorization
dc.keywordsIndependent component analysis bounded component analysis
dc.keywordsMatrix factorization
dc.keywordsCriterion
dc.languageEnglish
dc.publisherIEEE
dc.source2022 IEEE International Conference On Acoustics, Speech and Signal Processing (Icassp)
dc.subjectAcoustics
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectElectrical and electronics engineering
dc.titleAn information maximization based blind source separation approach for dependent and independent sources
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-0876-2897
local.contributor.kuauthorErdoğan, Alper Tunga
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05654.pdf
Size:
227.06 KB
Format:
Adobe Portable Document Format