Publication:
Quadratic approximations for the isochrons of oscillators: a general theory, advanced numerical methods, and accurate phase computations

Placeholder

Program

School / College / Institute

College of Engineering
GRADUATE SCHOOL OF SCIENCES AND ENGINEERING

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

The notion of isochrons for oscillators, introduced by Winfree and thereon heavily utilized in mathematical biology, were instrumental in introducing a notion of generalized phase and form the basis for oscillator perturbation analyses. Computing isochrons is a hard problem, existing brute-force methods incurring exponential complexity. In this paper, we present a precise and carefully developed theory and numerical techniques for computing local but quadratic approximations for isochrons. Previous work offers the techniques needed for computing only local linear approximations. Our treatment is general and applicable to oscillators with large dimension. We present examples for isochron computations, verify our results against exact calculations in a simple analytically calculable case, test our methods on complex oscillators, and show how quadratic approximations of isochrons can be used in formulating accurate, novel phase computation schemes and finally allude to second-order accurate compact phase macromodels. Oscillator studies seem to have progressed independently in electronics and biology. Even though analyses in electronics did not make use of the notion of isochrons, similar models and methods, expressed in totally different terminologies, have been developed in both disciplines. In this paper, we also reveal the connection between oscillator analysis work in these two seemingly disparate disciplines.

Source

Publisher

IEEE-Inst Electrical Electronics Engineers Inc

Subject

Computer science, Computer architecture, Electrical electronics engineering

Citation

Has Part

Source

Ieee Transactions on Computer-Aided Design of Integrated Circuits and Systems

Book Series Title

Edition

DOI

10.1109/TCAD.2010.2049056

item.page.datauri

Link

Rights

Rights URL (CC Link)

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details