Publication:
Theoretical and numerical analysis of radiation belt electron precipitation by coherent whistler mode waves

dc.contributor.coauthorHarid, V.
dc.contributor.coauthorGolkowski, M.
dc.contributor.coauthorBell, T.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorİnan, Umran Savaş
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid177880
dc.date.accessioned2024-11-09T12:01:00Z
dc.date.issued2014
dc.description.abstractThe interaction between coherent whistler mode waves and energetic radiation belt electrons can result in pitch angle scattering of electrons into the bounce loss cone and subsequent precipitation. In studying the effects of VLF transmitter signals on particle precipitation, past modeling efforts have focused on the computation of diffusion coefficients for a Fokker-Planck model. In contrast, to capture the nonlinear effects of large-amplitude coherent waves, we evaluate particle precipitation using a Vlasov-Liouville (VL) model which computes the phase space particle distribution function directly using a characteristic-based solution of the Vlasov equation. Previous work has shown that in the case of large-amplitude coherent waves, phase trapping can significantly perturb resonant particles from their adiabatic paths. We evaluate the importance of phase trapping over a range of wave amplitudes (up to 200 pT); the percentage of particles that precipitate after being phase trapped is computed over a phase space grid in the loss cone. The results demonstrate that phase trapping contributes significantly to precipitation when a large-amplitude wave (> 100 pT) is present. Additionally, linear theory can be valid over a broad range of amplitudes and the relative accuracy of linear theory in calculating the precipitated flux depends strongly on the initial particle distribution. Additionally, we demonstrate the ability of the VL model to calculate the time evolution of the precipitated flux due to short-duration whistler mode pulses. The physical parameters used in this study are typical of those associated with the Siple Station wave injection experiment.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue6
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipAFRL
dc.description.versionPublisher version
dc.description.volume119
dc.formatpdf
dc.identifier.doi10.1002/2014JA019809
dc.identifier.eissn2169-9402
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00616
dc.identifier.issn2169-9380
dc.identifier.linkhttps://doi.org/10.1002/2014JA019809
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84904660229
dc.identifier.urihttps://hdl.handle.net/20.500.14288/957
dc.identifier.wos339710300017
dc.keywordsLinear diffusion-coefficients
dc.keywordsPitch-angle diffusion
dc.keywordsVlf waves
dc.keywordsTriggered emissions
dc.keywordsEnergetic electrons
dc.keywordsMagnetic-field
dc.keywordsMagnetosphere
dc.keywordsPlasma
dc.keywordsScattering
dc.languageEnglish
dc.publisherAmerican Geophysical Union (AGU)
dc.relation.grantnoFA9453-11-C-0011
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/684
dc.sourceJournal of Geophysical Research: Space Physics
dc.subjectAstronomy and astrophysics
dc.titleTheoretical and numerical analysis of radiation belt electron precipitation by coherent whistler mode waves
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-5837-5807
local.contributor.kuauthorİnan, Umran Savaş
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
684.pdf
Size:
3.55 MB
Format:
Adobe Portable Document Format