Publication: Inequity-averse shelter location for disaster preparedness
dc.contributor.coauthor | Gutjahr, Walter J. | |
dc.contributor.department | Department of Industrial Engineering | |
dc.contributor.kuauthor | Salman, Fatma Sibel | |
dc.contributor.kuauthor | Hashemian, Mohammadmahdi | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Industrial Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.yokid | 178838 | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T12:39:43Z | |
dc.date.issued | 2019 | |
dc.description.abstract | We study the problem of selecting a set of shelter locations in preparation for natural disasters. Shelters provide victims of a disaster both a safe place to stay and relief necessities such as food, water and medical support. Individuals from the affected population living in a set of population points go to, or are transported to the assigned open shelters. We aim to take both efficiency and inequity into account, thus we minimize a linear combination of: (i) the mean distance between opened shelter locations and the locations of the individuals assigned to them; and (ii) Gini's Mean Absolute Difference of these distances. We develop a stochastic programming model with a set of scenarios that consider uncertain demand and disruptions in the transportation network. A chance constraint is defined on the total cost of opening the shelters and their capacity expansion. In this stochastic context, a weighted mean of the so-called ex ante and ex post versions of the inequity-averse objective function under uncertainty is optimized. Since the model can be solved to optimality only for small instances, we develop a tailored Genetic Algorithm (GA) that utilizes a mixed-integer programming subproblem to solve this problem heuristically for larger instances. We compare the performance of the mathematical program and the GA via benchmark instances where the model can be solved to optimality or near optimality. It turns out that the GA yields small optimality gaps in much shorter time for these instances. We run the GA also on Istanbul data to drive insights to guide decision-makers for preparation. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 8 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | N/A | |
dc.description.version | Publisher version | |
dc.description.volume | 51 | |
dc.format | ||
dc.identifier.doi | 10.1080/24725854.2018.1496372 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR01799 | |
dc.identifier.issn | 2472-5854 | |
dc.identifier.link | https://doi.org/10.1080/24725854.2018.1496372 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85061431157 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/2124 | |
dc.identifier.wos | 472044800002 | |
dc.keywords | Shelter location | |
dc.keywords | Inequity aversion | |
dc.keywords | Chance-constrained optimization | |
dc.keywords | Disaster preparedness | |
dc.language | English | |
dc.publisher | Taylor _ Francis | |
dc.relation.grantno | NA | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8426 | |
dc.source | IISE Transactions | |
dc.subject | Engineering, industrial | |
dc.subject | Operations research and management science | |
dc.title | Inequity-averse shelter location for disaster preparedness | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0001-6833-2552 | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Salman, Fatma Sibel | |
local.contributor.kuauthor | Hashemian, Mohammadmahdi | |
relation.isOrgUnitOfPublication | d6d00f52-d22d-4653-99e7-863efcd47b4a | |
relation.isOrgUnitOfPublication.latestForDiscovery | d6d00f52-d22d-4653-99e7-863efcd47b4a |
Files
Original bundle
1 - 1 of 1