Publication: EV-Lev: extracellular vesicle isolation from human plasma using microfluidic magnetic levitation device
Program
KU-Authors
PhD Student, Aygün, Uğur
KU Authors
Co-Authors
Yaman, Sena
Devoe, Tessa
Parlatan, Ugur
Bobbili, Madhusudhan Reddy
Karim, Asma H.
Grillari, Johannes
Durmus, Naside Gozde
Publication Date
Language
Type
Embargo Status
No
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
Biological nanomaterials have unique magnetic and density characteristics that can be employed to isolate them into subpopulations. Extracellular nanovesicles (EVs) are crucial for cellular communication; however, their isolation poses significant challenges due to their diverse sizes and compositions. We present EV-Lev, a microfluidic magnetic levitation technique for high-throughput, selective isolation of small EVs (<200 nm) from human plasma. EV-Lev overcomes the challenges posed by the subtle buoyancy characteristics of EVs, whose small size and varied densities complicate traditional magnetic levitation techniques. It employs antibody-coated polymer beads of varying densities, integrating immuno-affinity and microfluidics to isolate EVs from sub-milliliter plasma volumes efficiently. It facilitates rapid, simultaneous sorting of EV subpopulations based on surface markers, such as CD9, CD63, and CD81, achieving high yield and purity. Subsequent size and morphology analyses confirmed that the isolated EVs maintain their structural integrity. EV-Lev could help uncover the cargo and function of EV subpopulations associated with multiple diseases including cancer, infectious diseases and help to discover potential biomarkers in small volume samples, while offering a portable, cost-effective, and straightforward assay scheme.
Source
Publisher
Royal Society of Chemistry
Subject
Biochemistry and molecular biology, Chemistry, Science and technology, Instruments and instrumentation
Citation
Has Part
Source
Lab on a Chip
Book Series Title
Edition
DOI
10.1039/d4lc00830h
