Publication:
Deep learning-enabled technologies for bioimage analysis

dc.contributor.coauthorAngın, Pelin
dc.contributor.coauthorYetişen, Ali Kemal
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorRabbi, Fazle
dc.contributor.kuauthorDabbagh, Sajjad Rahmani
dc.contributor.kuauthorTaşoğlu, Savaş
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.researchcenterKU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR)
dc.contributor.researchcenterKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid291971
dc.date.accessioned2024-11-09T11:53:07Z
dc.date.issued2022
dc.description.abstractDeep learning (DL) is a subfield of machine learning (ML), which has recently demon-strated its potency to significantly improve the quantification and classification workflows in bio-medical and clinical applications. Among the end applications profoundly benefitting from DL, cellular morphology quantification is one of the pioneers. Here, we first briefly explain fundamental concepts in DL and then we review some of the emerging DL-enabled applications in cell morphology quantification in the fields of embryology, point-of-care ovulation testing, as a predictive tool for fetal heart pregnancy, cancer diagnostics via classification of cancer histology images, autosomal polycystic kidney disease, and chronic kidney diseases.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipTÜBİTAK 2232 International Fellowship for Outstandig Researchers Award
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipMarie Sklodowska-Curie Individual Fellowship
dc.description.sponsorshipAlexander von Humboldt Research Fellowship for Experienced Researchers
dc.description.sponsorshipRoyal Academy Newton-Katip Çelebi Transforming Systems Through Partnership
dc.description.versionPublisher version
dc.description.volume13
dc.formatpdf
dc.identifier.doi10.3390/mi13020260
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03510
dc.identifier.issn2072-666X
dc.identifier.linkhttps://doi.org/10.3390/mi13020260
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85124353297
dc.identifier.urihttps://hdl.handle.net/20.500.14288/761
dc.identifier.wos807493400001
dc.keywordsDeep learning
dc.keywordsMachine learning
dc.keywordsBioimage quantification
dc.keywordsCell morphology classification
dc.keywordsCancer diagnosis
dc.languageEnglish
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.grantno118C391
dc.relation.grantno101003361
dc.relation.grantno120N019
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10298
dc.sourceMicromachines
dc.subjectChemistry science and technology
dc.subjectInstruments and instrumentation physics
dc.titleDeep learning-enabled technologies for bioimage analysis
dc.typeReview
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.authorid0000-0003-4604-217X
local.contributor.kuauthorRabbi, Fazle
local.contributor.kuauthorDabbagh, Sajjad Rahmani
local.contributor.kuauthorTaşoğlu, Savaş
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10298.pdf
Size:
11.56 MB
Format:
Adobe Portable Document Format