Publication:
AffectON: Incorporating affect into dialog generation

dc.contributor.coauthorBucinca, Zana
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYemez, Yücel
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorSezgin, Tevfik Metin
dc.contributor.researchcenterKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:37:47Z
dc.date.issued2020
dc.description.abstractDue to its expressivity, natural language is paramount for explicit and implicit affective state communication among humans. The same linguistic inquiry (e.g., How are you?) might induce responses with different affects depending on the affective state of the conversational partner(s) and the context of the conversation. Yet, most dialog systems do not consider affect as constitutive aspect of response generation. In this article, we introduce AffectON, an approach for generating affective responses during inference. For generating language in a targeted affect, our approach leverages a probabilistic language model and an affective space. AffectON is language model agnostic, since it can work with probabilities generated by any language model (e.g., sequence-to-sequence models, neural language models, n-grams). Hence, it can be employed for both affective dialog and affective language generation. We experimented with affective dialog generation and evaluated the generated text objectively and subjectively. For the subjective part of the evaluation, we designed a custom user interface for rating and provided recommendations for the design of such interfaces. The results, both subjective and objective demonstrate that our approach is successful in pulling the generated language toward the targeted affect, with little sacrifice in syntactic coherence.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessGreen Submitted
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsAuthors M. Sezgin, Y. Yemez, and E. Erzin would like to thank ERA-Net CHIST-ERA (JOKER project) and The Scientific and Technological Research Council of Turkey (TUBITAK, Grant number 113E324).
dc.description.volume14
dc.identifier.doi10.1109/TAFFC.2020.3043067
dc.identifier.eissn 
dc.identifier.issn1949-3045
dc.identifier.link 
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85097961691
dc.identifier.urihttps://doi.org/10.1109/TAFFC.2020.3043067
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22484
dc.identifier.wos967108300001
dc.keywordsTask analysis
dc.keywordsDecoding
dc.keywordsTraining
dc.keywordsSyntactics
dc.keywordsSemantics
dc.keywordsComputers
dc.keywordsRecurrent neural networks
dc.keywordsAffective computing
dc.keywordsAffective dialog generation
dc.languageen
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.grantnoScientific and Technological Research Council of Turkey (TUBITAK) [113E324]
dc.rights 
dc.sourceIEEE Transactions on Affective Computing
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectCybernetics
dc.titleAffectON: Incorporating affect into dialog generation
dc.typeJournal article
dc.type.other 
dspace.entity.typePublication
local.contributor.kuauthorYemez, Yücel
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorSezgin, Tevfik Metin
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05080.pdf
Size:
663.31 KB
Format:
Adobe Portable Document Format