Publication:
Melt-centrifuged (BI,SB)(2)TE-3: engineering microstructure toward high thermoelectric efficiency

dc.contributor.coauthorPan, Yu
dc.contributor.coauthorGrovogui, Jann A.
dc.contributor.coauthorWitting, Ian T.
dc.contributor.coauthorHanus, Riley
dc.contributor.coauthorXu, Yaobin
dc.contributor.coauthorWu, Jinsong
dc.contributor.coauthorWu, Chao-Feng
dc.contributor.coauthorSun, Fu-Hua
dc.contributor.coauthorZhuang, Hua-Lu
dc.contributor.coauthorDong, Jin-Feng
dc.contributor.coauthorLi, Jing-Feng
dc.contributor.coauthorDravid, Vinayak P.
dc.contributor.coauthorSnyder, G. Jeffrey
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorAydemir, Umut
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid58403
dc.date.accessioned2024-11-10T00:11:09Z
dc.date.issued2018
dc.description.abstractMicrostructure engineering is an effective strategy to reduce lattice thermal conductivity (kappa(l)) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt-centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a approximate to 60% reduction of kappa(l) compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid-fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)(2)Te-3 alloys. A segmented leg of melt-centrifuged Bi0.5Sb1.5Te3 and Bi0.3Sb1.7Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323-523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high-efficiency porous thermoelectric materials through an unconventional melt-centrifugation technique.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue34
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume30
dc.identifier.doi10.1002/adma.201802016
dc.identifier.eissn1521-4095
dc.identifier.issn0935-9648
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85050362852
dc.identifier.urihttp://dx.doi.org/10.1002/adma.201802016
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17434
dc.identifier.wos442206400015
dc.keywordsDislocation
dc.keywordsLiquid phase sintering
dc.keywordsMelt-centrifugation
dc.keywordsP-type bismuth-antimony-telluride
dc.keywordsThermoelectric
dc.languageEnglish
dc.publisherWiley-V C H Verlag Gmbh
dc.sourceAdvanced Materials
dc.subjectChemistry, multidisciplinary
dc.subjectChemistry, physical
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials science, multidisciplinary
dc.subjectPhysics, applied
dc.subjectPhysics, condensed matter
dc.titleMelt-centrifuged (BI,SB)(2)TE-3: engineering microstructure toward high thermoelectric efficiency
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-1164-1973
local.contributor.kuauthorAydemir, Umut
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files