Publication: Melt-centrifuged (BI,SB)(2)TE-3: engineering microstructure toward high thermoelectric efficiency
dc.contributor.coauthor | Pan, Yu | |
dc.contributor.coauthor | Grovogui, Jann A. | |
dc.contributor.coauthor | Witting, Ian T. | |
dc.contributor.coauthor | Hanus, Riley | |
dc.contributor.coauthor | Xu, Yaobin | |
dc.contributor.coauthor | Wu, Jinsong | |
dc.contributor.coauthor | Wu, Chao-Feng | |
dc.contributor.coauthor | Sun, Fu-Hua | |
dc.contributor.coauthor | Zhuang, Hua-Lu | |
dc.contributor.coauthor | Dong, Jin-Feng | |
dc.contributor.coauthor | Li, Jing-Feng | |
dc.contributor.coauthor | Dravid, Vinayak P. | |
dc.contributor.coauthor | Snyder, G. Jeffrey | |
dc.contributor.department | Department of Chemistry | |
dc.contributor.department | Department of Chemistry | |
dc.contributor.kuauthor | Aydemir, Umut | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.contributor.yokid | 58403 | |
dc.date.accessioned | 2024-11-10T00:11:09Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (kappa(l)) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt-centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a approximate to 60% reduction of kappa(l) compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid-fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)(2)Te-3 alloys. A segmented leg of melt-centrifuged Bi0.5Sb1.5Te3 and Bi0.3Sb1.7Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323-523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high-efficiency porous thermoelectric materials through an unconventional melt-centrifugation technique. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 34 | |
dc.description.openaccess | NO | |
dc.description.publisherscope | International | |
dc.description.volume | 30 | |
dc.identifier.doi | 10.1002/adma.201802016 | |
dc.identifier.eissn | 1521-4095 | |
dc.identifier.issn | 0935-9648 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85050362852 | |
dc.identifier.uri | http://dx.doi.org/10.1002/adma.201802016 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/17434 | |
dc.identifier.wos | 442206400015 | |
dc.keywords | Dislocation | |
dc.keywords | Liquid phase sintering | |
dc.keywords | Melt-centrifugation | |
dc.keywords | P-type bismuth-antimony-telluride | |
dc.keywords | Thermoelectric | |
dc.language | English | |
dc.publisher | Wiley-V C H Verlag Gmbh | |
dc.source | Advanced Materials | |
dc.subject | Chemistry, multidisciplinary | |
dc.subject | Chemistry, physical | |
dc.subject | Nanoscience | |
dc.subject | Nanotechnology | |
dc.subject | Materials science, multidisciplinary | |
dc.subject | Physics, applied | |
dc.subject | Physics, condensed matter | |
dc.title | Melt-centrifuged (BI,SB)(2)TE-3: engineering microstructure toward high thermoelectric efficiency | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0003-1164-1973 | |
local.contributor.kuauthor | Aydemir, Umut | |
relation.isOrgUnitOfPublication | 035d8150-86c9-4107-af16-a6f0a4d538eb | |
relation.isOrgUnitOfPublication.latestForDiscovery | 035d8150-86c9-4107-af16-a6f0a4d538eb |