Publication: Quantum mechanical symmetries and topological invariants
dc.contributor.coauthor | Samani, Keivan Aghababaei | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Mostafazadeh, Ali | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.date.accessioned | 2024-11-09T11:58:34Z | |
dc.date.issued | 2001 | |
dc.description.abstract | We give the definition and explore the algebraic structure of a class of quantum symmetries, called topological symmetries, which are generalizations of supersymmetry in the sense that they involve topological invariants similar to the Witten index. A topological symmetry (TS) is specified by an integer n > 1, which determines its grading properties, and an a-tuple of positive integers (m(1), m(2),..., m(n)). We identify the algebras of supersymmetry, p = 2 parasupersymmetry, and fractional supersymmetry of order n with those of the Z(2)-graded TS of type (1, 1), Zz-graded TS of type (2, 1), and Z(n)-graded TS of type (1, 1,...,1), respectively. We also comment on the mathematical interpretation of the topological invariants associated with the Z(n)-graded TS of type (1, 1,...,1), For n = 2, the invariant is the Witten index which can be identified with the analytic index of a Fredholm operator. For n > 2, there are n independent integer-valued invariants. These can be related to differences of the dimension of the kernels of various products of n operators satisfying certain conditions. (C) 2001 Elsevier Science B.V. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 1&2 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | N/A | |
dc.description.version | Publisher version | |
dc.description.volume | 595 | |
dc.identifier.doi | 10.1016/S0550-3213(00)00692-1 | |
dc.identifier.eissn | 1873-1562 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR00546 | |
dc.identifier.issn | 0550-3213 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-0001073505 | |
dc.identifier.uri | https://doi.org/10.1016/S0550-3213(00)00692-1 | |
dc.identifier.wos | 166912800020 | |
dc.keywords | Singer index theorem | |
dc.keywords | Fractional supersymmetry | |
dc.keywords | Generalized supersymmetry | |
dc.keywords | Deformation | |
dc.keywords | Foundations | |
dc.keywords | Superspace | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Nuclear Physics B | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/608 | |
dc.subject | Physics | |
dc.title | Quantum mechanical symmetries and topological invariants | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Mostafazadeh, Ali | |
local.publication.orgunit1 | College of Sciences | |
local.publication.orgunit2 | Department of Mathematics | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | af0395b0-7219-4165-a909-7016fa30932d |
Files
Original bundle
1 - 1 of 1