Publication:
Editorial: introduction to the issue on deep learning for image/video restoration and compression

dc.contributor.coauthorCovell, Michele
dc.contributor.coauthorTimofte, Radu
dc.contributor.coauthorDong, Chao
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid26207
dc.date.accessioned2024-11-09T13:23:24Z
dc.date.issued2021
dc.description.abstractThe papers in this special issue focus on deep learning for image/video restoration and compression. The huge success of deep-learning-based approaches in computer vision has inspired research in learned solutions to classic image/video processing problems, such as denoising, deblurring, dehazing, deraining, super-resolution (SR), and compression. Hence, learning-based methods have emerged as a promising nonlinear signal-processing framework for image/ video restoration and compression. Recent works have shown that learned models can achieve significant performance gains, especially in terms of perceptual quality measures, over traditional methods. Hence, the state of the art in image restoration and compression is getting redefined. This special issue covers the state of the art in learned image/video restoration and compression to promote further progress in innovative architectures and training methods for effective and efficient networks for image/video restoration and compression.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume15
dc.formatpdf
dc.identifier.doi10.1109/JSTSP.2021.3053364
dc.identifier.eissn1941-0484
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03850
dc.identifier.issn1932-4553
dc.identifier.linkhttps://doi.org/10.1109/JSTSP.2021.3053364
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85101743877
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3369
dc.identifier.wos622098600001
dc.keywordsSpecial issues and sections
dc.keywordsImage restoration
dc.keywordsImage coding
dc.keywordsNoise reduction
dc.keywordsDegradation
dc.keywordsAdaptation models
dc.keywordsDeep learning
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10713
dc.sourceIEEE Journal of Selected Topics in Signal Processing
dc.subjectEngineering
dc.titleEditorial: introduction to the issue on deep learning for image/video restoration and compression
dc.typeOther
dc.type.otherEditorial material
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.kuauthorTekalp, Ahmet Murat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10713.pdf
Size:
76.95 KB
Format:
Adobe Portable Document Format