Publication:
Molecular beamforming for actuation in molecular communication networks

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Pusane, Ali E.
Yılmaz, H. Birkan
Tuğcu, Tuna

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

The actuation accuracy of sensing tasks performed by molecular communication (MC) schemes is a very important metric. Reducing the effect of sensors fallibility can be achieved by improvements and advancements in the sensor and communication networks design. Inspired by the technique of beamforming used extensively in radio frequency communication systems, a novel molecular beamforming design is proposed in this paper. This design can find application in tasks related to actuation of nano machines in MC networks. The main idea behind the proposed scheme is that the utilization of more sensing nano machines in a network can increase the overall accuracy of that network. In other words, the probability of an actuation error reduces as the number of sensors that collectively take the actuation decision increases. In order to achieve this, several design procedures are proposed. Three different scenarios for the observation of the actuation error are investigated. For each case, the analytical background is provided and compared with the results obtained by computer simulations. The improvement in the actuation accuracy by means of molecular beamforming is verified for a uniform linear array as well as for a random topology.

Source

Publisher

IEEE-Inst Electrical Electronics Engineers Inc

Subject

Biochemical research methods, Nanoscience and nanotechnology

Citation

Has Part

Source

IEEE Transactions on Nanobioscience

Book Series Title

Edition

DOI

10.1109/TNB.2023.3292131

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details