Publication:
Hypothetical yet effective: computational identification of high-performing MOFs for CO2 capture

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorDemir, Hakan
dc.contributor.kuauthorKeskin, Seda
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid40548
dc.date.accessioned2024-11-09T13:52:31Z
dc.date.issued2022
dc.description.abstractWith the advances in computational resources and algorithms, computer simulations are being increasingly used to tackle the most challenging problems of the world. Among them, CO2 capture is a topic that needs imminent attention as the presence of high levels of CO2 in the air can lead to drastic shifts in global climate. Here, a recently developed hypothetical metal-organic framework (MOF) database comprised of anion-pillared (AP) MOFs is computationally screened for the separation of CO2/CO, CO2/H-2, and CO2/N-2 gas mixtures at room temperature. The best performing MOFs are identified using three performance metrics, adsorption selectivity, working capacity, and regenerability, in conjunction. In these top materials, the preferential adsorption sites are illustrated, which will be useful in guiding the experimental design of new MOFs with extraordinarily high CO2 selectivities. The favorable separation performances of AP MOFs suggest that efficient gas separations can be conducted using MOFs without open metal sites.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipERC-2017-Starting Grant
dc.description.sponsorshipCOSMOS
dc.description.sponsorshipNational Center for High Performance Computing of Turkey (UHeM)
dc.description.versionPublisher version
dc.description.volume160
dc.formatpdf
dc.identifier.doi10.1016/j.compchemeng.2022.107705
dc.identifier.eissn1873-4375
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03533
dc.identifier.issn0098-1354
dc.identifier.linkhttps://doi.org/10.1016/j.compchemeng.2022.107705
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85124287704
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3985
dc.identifier.wos754653700002
dc.keywordsMetal-organic framework
dc.keywordsCarbon-dioxide
dc.keywordsswing adsorption
dc.keywordsForce-field
dc.keywordsSelectivity
dc.keywordsSeparation
dc.keywordsAdsorbent
dc.keywordsCapacity
dc.keywordsDesign
dc.keywordsInterpenetration
dc.languageEnglish
dc.publisherElsevier
dc.relation.grantno756489-COSMOS
dc.relation.grantno1009312021
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10327
dc.sourceComputers and Chemical Engineering
dc.subjectComputer science
dc.subjectInterdisciplinary applications
dc.subjectChemical engineering
dc.titleHypothetical yet effective: computational identification of high-performing MOFs for CO2 capture
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0001-5968-0336
local.contributor.kuauthorDemir, Hakan
local.contributor.kuauthorKeskin, Seda
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10327.pdf
Size:
2.67 MB
Format:
Adobe Portable Document Format