Publication:
Artificial intelligence-enabled staging classification of pressure injuries

dc.contributor.departmentSchool of Nursing
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorDemir, Ayşe Sılanur
dc.contributor.kuauthorKaradağ, Ayişe
dc.contributor.kuauthorDemir, Çiğdem Gündüz
dc.contributor.kuauthorBattal, Ahmet Emin
dc.contributor.kuauthorGüleç, Cevat
dc.contributor.kuauthorErgün, Eren
dc.contributor.kuauthorBakçacı, Ahmet
dc.contributor.schoolcollegeinstituteSCHOOL OF NURSING
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-12-31T08:19:02Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractOBJECTIVE:This study aimed to design an artificial intelligence (AI) tool that can more accurately and objectively identify different stages of pressure injuries (PIs).METHODS:In this study, the authors proposed using AI and computer vision to classify PI images by stage. To this end, the authors implemented a classification network and trained it on a set of PIs images labeled with their stages. This dataset included images from 2 different sources, namely the publicly available Pressure Injury Image Dataset (1091 images), and a private dataset from Ko & ccedil; University Wound Research Laboratory (AY-Lab) (572 images). All images were resized to 224x224 and normalized according to the ImageNet-1K dataset before model input. Various deep learning architectures, including ResNet18, ResNet18-Transformer Encoder Hybrid Model, and DenseNet-121, were used for training and testing. Three-fold cross-validation was used to ensure more robust training and testing. Multiple configurations were tested for each model, and the best-performing configuration was identified. Grad-CAM was applied to visualize attention areas for further evaluation of the model results.RESULTS:After 3-fold cross-validation, ResNet18 outperformed all tested models, achieving an average accuracy of 76.92 +/- 0.92% on the 4-class classification task. The model demonstrated the highest precision of 87.35 +/- 5.54% for Stage 1 and the lowest precision of 64.72 +/- 2.66% for Stage 3.CONCLUSIONS:The results of using the proposed computational approach for PI staging are promising. The AI model can automate PI stage classification, making it a valuable tool for clinic experts.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1097/ASW.0000000000000352
dc.identifier.eissn1538-8654
dc.identifier.embargoNo
dc.identifier.endpage486
dc.identifier.issn1527-7941
dc.identifier.issue9
dc.identifier.pubmed40981689
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-105016768196
dc.identifier.startpage480
dc.identifier.urihttps://doi.org/10.1097/ASW.0000000000000352
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31427
dc.identifier.volume38
dc.identifier.wos001578283400013
dc.keywordsArtificial intelligence
dc.keywordsAssessment
dc.keywordsDeep learning
dc.keywordsDetection
dc.keywordsPressure injury
dc.keywordsStages and categories
dc.language.isoeng
dc.publisherLippincott Williams & Wilkins (LWW)
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofAdvances in Skin and Wound Care
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDermatology
dc.subjectNursing
dc.subjectSurgery
dc.titleArtificial intelligence-enabled staging classification of pressure injuries
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameDemir
person.familyNameKaradağ
person.familyNameDemir
person.familyNameBattal
person.familyNameGüleç
person.familyNameErgün
person.familyNameBakçacı
person.givenNameAyşe Sılanur
person.givenNameAyişe
person.givenNameÇiğdem Gündüz
person.givenNameAhmet Emin
person.givenNameCevat
person.givenNameEren
person.givenNameAhmet
relation.isOrgUnitOfPublicationcd883b5a-a59a-463b-9038-a0962a6b0749
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscoverycd883b5a-a59a-463b-9038-a0962a6b0749
relation.isParentOrgUnitOfPublication9781feb6-cb81-4c13-aeb3-97dae2048412
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery9781feb6-cb81-4c13-aeb3-97dae2048412

Files