Publication:
Average size of gaps in the fourier expansion of modular forms

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorAlkan, Emre
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-10T00:04:40Z
dc.date.issued2007
dc.description.abstractWe prove that certain powers of the gap function for the newform associated to an elliptic curve without complex multiplication are "finite" on average. in particular we obtain quantitative results on the number of large values of the gap function.
dc.description.indexedbyWOS
dc.description.issue2
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume3
dc.identifier.doi10.1142/S1793042107000870
dc.identifier.issn1793-0421
dc.identifier.quartileQ3
dc.identifier.urihttps://doi.org/10.1142/S1793042107000870
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16309
dc.identifier.wos252203300003
dc.keywordsGap function
dc.keywordsNewform
dc.language.isoeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofInternational Journal of Number Theory
dc.subjectMathematics
dc.titleAverage size of gaps in the fourier expansion of modular forms
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAlkan, Emre
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files