Publication:
Versatile liquid-core optofluidic waveguides fabricated in hydrophobic silica aerogels by femtosecond-laser ablation

dc.contributor.coauthorYalizay, Berna
dc.contributor.coauthorMorova, Yagiz
dc.contributor.coauthorDincer, Koray
dc.contributor.coauthorJonas, Alexandr
dc.contributor.coauthorAkturk, Selcuk
dc.contributor.departmentDepartment of Physics
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorFaculty Member, Erkey, Can
dc.contributor.kuauthorFaculty Member, Kiraz, Alper
dc.contributor.kuauthorPhD Student, Özbakır, Yaprak
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-10T00:09:49Z
dc.date.issued2015
dc.description.abstractWe report on the fabrication and characterization of versatile light waveguides exploiting filaments of a polar liquid confined within hydrophobic silica aerogels. Aerogels are highly porous materials with extremely low refractive index which makes them suitable as rigid cladding of liquid-core optofluidic waveguides based on total internal reflection of light. In this article, we introduce a new microfabrication technique that allows direct and precise processing of monolithic silica aerogels by ablation with femtosecond laser pulses. Using fast scanning of the focused laser ablation beam synchronized with the motion of the processed aerogel sample, we created high-quality straight microchannels of similar to 5 mm length with controlled cross-sections inside monolithic aerogels. After the ablation, we filled the channels with high-refractive index ethylene glycol, forming multimode liquid core - solid cladding optofluidic waveguides. Subsequently, we carried out light-guiding experiments to measure overall optical attenuation of these waveguides. The characterization of waveguide transmission yielded values of propagation losses lower than 10 dB cm(-1), demonstrating that the liquid-core waveguides with laser-ablated aerogel cladding represent an attractive alternative in optofluidic applications targeting controlled routing of light along arbitrary three-dimensional paths.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [112T972] This work was partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Grant No. 112T972).
dc.description.volume47
dc.identifier.doi10.1016/j.optmat.2015.06.024
dc.identifier.eissn1873-1252
dc.identifier.issn0925-3467
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-84931024166
dc.identifier.urihttps://doi.org/10.1016/j.optmat.2015.06.024
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17177
dc.identifier.wos359166500075
dc.keywordsOptofluidics
dc.keywordsLight waveguides
dc.keywordsMicrofluidics
dc.keywordsAerogels
dc.keywordsFemtosecond laser ablation
dc.keywordsTeflon-af
dc.keywordsRefractive-index
dc.keywordsChannels
dc.keywordsSensors
dc.keywordsMicrofabrication
dc.keywordsMicrochannels
dc.keywordsLight
dc.keywordsGlass
dc.keywordsCell
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofOptical Materials
dc.subjectMaterials science
dc.subjectOptics
dc.titleVersatile liquid-core optofluidic waveguides fabricated in hydrophobic silica aerogels by femtosecond-laser ablation
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÖzbakır, Yaprak
local.contributor.kuauthorErkey, Can
local.contributor.kuauthorKiraz, Alper
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Chemical and Biological Engineering
local.publication.orgunit2Department of Physics
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files