Publication:
Second-order backward stochastic differential equations and fully nonlinear parabolic pdes

dc.contributor.coauthorCheridito, Patrick
dc.contributor.coauthorTouzi, Nizar
dc.contributor.coauthorVictoir, Nicolas
dc.contributor.departmentDepartment of Economics
dc.contributor.kuauthorSoner, Halil Mete
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Economics
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:01:11Z
dc.date.issued2007
dc.description.abstractFor a d-dimensional diffusion of the form dXt = μ(X t)dt + σ(Xt)dWt and continuous functions f and g, we study the existence and uniqueness of adapted processes Y, Z, Γ, and A solving the second-order backward stochastic differential equation (2BSDE) dYt = f(t, Xt, Yt, Z t, Γt)dt + Z′t o dXt, t ∈ [0, T), dZt = Atdt + ΓtdX t, t ∈[0, T), YT = g(XT). If the associated PDE -vt(t, x) + f(t, x, v(t, x), Dv(t, x), D 2v(t, x)) = 0, (t, x) ∈ [0, 7) × ℝd, v(T, x) = g(x), has a sufficiently regular solution, then it follows directly from Itô's formula that the processes v(t, Xt), Dv(t, X t), D2v(t, Xt), ℒDv(t, Xt), t ∈ [0, T], solve the 2BSDE, where ℒ is the Dynkin operator of X without the drift term. The main result of the paper shows that if f is Lipschitz in Y as well as decreasing in Γ and the PDE satisfies a comparison principle as in the theory of viscosity solutions, then the existence of a solution (Y, Z, Γ, A) to the 2BSDE implies that the associated PDE has a unique continuous viscosity solution v and the process Y is of the form Yt = v(t, Xt), t ∈ [0, T]. In particular, the 2BSDE has at most one solution. This provides a stochastic representation for solutions of fully nonlinear parabolic PDEs. As a consequence, the numerical treatment of such PDEs can now be approached by Monte Carlo methods. © 2006 Wiley Periodicals, Inc.
dc.description.indexedbyScopus
dc.description.issue7
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume60
dc.identifier.doi10.1002/cpa.20168
dc.identifier.issn0010-3640
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-34249723795&doi=10.1002%2fcpa.20168&partnerID=40&md5=8017793cee8c1cb6d56e29064aa39983
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-34249723795
dc.identifier.urihttp://dx.doi.org/10.1002/cpa.20168
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8175
dc.keywordsN/A
dc.languageEnglish
dc.publisherWiley
dc.sourceCommunications on Pure and Applied Mathematics
dc.subjectEconomy
dc.subjectMathematics
dc.titleSecond-order backward stochastic differential equations and fully nonlinear parabolic pdes
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-0824-1808
local.contributor.kuauthorSoner, Halil Mete
relation.isOrgUnitOfPublication7ad2a3bb-d8d9-4cbd-a6a3-3ca4b30b40c3
relation.isOrgUnitOfPublication.latestForDiscovery7ad2a3bb-d8d9-4cbd-a6a3-3ca4b30b40c3

Files