Publication:
Dynamic modeling of an industrial diesel hydroprocessing plant by the method of continuous lumping

Placeholder

Program

KU Authors

Co-Authors

Canan, Ümmuhan
İş, Gamze
Erdoğan, Murat

Advisor

Publication Date

2015

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

Diesel hydroprocessing is an important refinery process which consists of hydrodesulfurization to remove the undesired sulfur from the oil feedstock followed by hydrocracking and fractionation to obtain diesel with desired properties. Due to the new emission standards to improve the air quality, there is an increasing demand for the production of ultra low sulfur diesel fuel. This paper is addressing the development of a reliable dynamic process model which can be used for real-time optimization and control purposes to improve the process conditions of existing plants to meet the low-sulfur demand. The overall plant model consists of a hydrodesulfurization (HDS) model for the first two reactor beds followed by a hydrocracking (HC) model for the last cracking bed. The models are dynamic, non-isothermal, pseudo-homogeneous plug flow reactor models. Reaction kinetics are modeled using the method of continuous lumping which treats the reaction medium as a continuum of species whose reactivities depend on the true boiling point of the mixture. The key modeling parameters are estimated using industrial data. Steady-state and dynamic model predictions of the reactor bed temperatures, sulfur removal, and diesel production match closely the plant data. (C) 2015 Elsevier Ltd. All rights reserved.

Description

Source:

Computers and Chemical Engineering

Publisher:

Elsevier

Keywords:

Subject

Computer science, Engineering, Chemical engineering

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details