Publication:
Nonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice

dc.contributor.coauthorKozielski, K. L.
dc.contributor.coauthorJahanshahi, A.
dc.contributor.coauthorGilbert, H. B.
dc.contributor.coauthorYu, Y.
dc.contributor.coauthorErin, Ö.
dc.contributor.coauthorFrancisco, D.
dc.contributor.coauthorAlosaimi, F.
dc.contributor.coauthorTemel, Y.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T12:15:05Z
dc.date.issued2021
dc.description.abstractDevices that electrically modulate the deep brain have enabled important breakthroughs in the management of neurological and psychiatric disorders. Such devices are typically centimeter-scale, requiring surgical implantation and wired-in powering, which increases the risk of hemorrhage, infection, and damage during daily activity. Using smaller, remotely powered materials could lead to less invasive neuromodulation. Here, we present injectable, magnetoelectric nanoelectrodes that wirelessly transmit electrical signals to the brain in response to an external magnetic field. This mechanism of modulation requires no genetic modification of neural tissue, allows animals to freely move during stimulation, and uses nonresonant carrier frequencies. Using these nanoelectrodes, we demonstrate neuronal modulation in vitro and in deep brain targets in vivo. We also show that local subthalamic modulation promotes modulation in other regions connected via basal ganglia circuitry, leading to behavioral changes in mice. Magnetoelectric materials present a versatile platform technology for less invasive, deep brain neuromodulation.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue3
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipInstitute for International Education
dc.description.sponsorshipWhitaker International Program
dc.description.sponsorshipNederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.versionPublisher version
dc.description.volume7
dc.formatpdf
dc.identifier.doi10.1126/sciadv.abc4189
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02681
dc.identifier.issn2375-2548
dc.identifier.linkhttps://doi.org/10.1126/sciadv.abc4189
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85099932126
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1324
dc.identifier.wos608481000011
dc.keywordsMagnetic stimulation
dc.keywordsElectrical-stimulation
dc.keywordsNervous-system
dc.keywordsCircuits
dc.keywordsNucleus
dc.keywordsSpeed
dc.languageEnglish
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9327
dc.sourceScience Advances
dc.subjectScience and technology
dc.titleNonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9327.pdf
Size:
2.7 MB
Format:
Adobe Portable Document Format