Publication: Dual focal plane augmented reality interactive display with gaze-tracker
Files
Program
KU Authors
Co-Authors
Advisor
Publication Date
2019
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
Stereoscopic augmented reality (AR) displays have a fixed focus plane and they suffer from visual discomfort due to vergence-accommodation conflict (VAC). In this study, we demonstrated a biocular (i.e. common optics for two eyes and same images are shown to both eyes) two focal-plane based AR system with real-time gaze tracker, which provides a novel interactive experience. To mitigate VAC, we propose a see-through near-eye display mechanism that generates two separate virtual image planes at arm's length depth levels (i.e. 25 cm and 50 cm). Our optical system generates virtual images by relaying two liquid crystal displays (LCDs) through a beam splitter and a Fresnel lens. While the system is limited to two depths and discontinuity occurs in the virtual scene, it provides correct focus cues and natural blur effect at the corresponding depths. This allows the user to distinguish virtual information through the accommodative response of the eye, even when the virtual objects overlap and partially occlude in the axial direction. The system also provides correct motion parallax cues within the movement range of the user without any need for sophisticated head trackers. A road scene simulation is realized as a convenient use-case of the proposed display so that a large monitor is used to create a background scene and the rendered content in the LCDs is augmented into the background. Field-of-view (FOV) is 60 x 36 degrees and the eye-box is larger than 100 mm, which is comfortable enough for two-eye viewing. The system includes a single camera-based pupil and gaze tracker, which is able to select the correct depth plane based on the shift in the interpupillary distance with user's convergence angle. The rendered content can be distributed to both depth planes and the background scene simultaneously. Thus, the user can select and interact with the content at the correct depth in a natural and comfortable way. The prototype system can be used in tasks that demand wide FOV and multiple focal planes and as an AR and vision research tool.
Description
Source:
OSA Continuum
Publisher:
Optical Society of America (OSA)
Keywords:
Subject
Optics