Publication:
Robust speech recognition using adaptively denoised wavelet coefficients

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorAkyol, Emrah
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileMaster Student
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid26207
dc.contributor.yokid34503
dc.contributor.yokidN/A
dc.date.accessioned2024-11-10T00:12:41Z
dc.date.issued2004
dc.description.abstractThe existence of additive noise affects the performance of speech recognition in real environments. We propose a new set of feature vectors for robust speech recognition using denoised wavelet coefficients. The use of wavelet coefficients in speech processing is motivated by the ability of the wavelet transform to capture both time and frequency information and the non-stationary behaviour of speech signals. We use one set of noisy data, such as data with car noise, and we use hard thresholding in the best basis for denoising. We use isolated digits as our database in our HMM based speech recognition system. A performance comparison of hard thresholding denoised wavelet coefficients and MFCC feature vectors is presented.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipIEEE
dc.description.sponsorshipTUBITAK
dc.description.sponsorshipIstanbul Teknik Universitesi
dc.description.sponsorshipaselsan
dc.description.sponsorshipProfilo Telr@
dc.identifier.doi10.1109/SIU.2004.1338549
dc.identifier.isbn0780-3831-84
dc.identifier.isbn9780-7803-8318-0
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-18844375112andpartnerID=40andmd5=45755346e5855c6c907e4707b0071d5c
dc.identifier.quartileN/A
dc.identifier.urihttp://dx.doi.org/10.1109/SIU.2004.1338549
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17695
dc.identifier.wos225861200104
dc.keywordsAdditive noise
dc.keywordsFeature vectors
dc.keywordsSpeech signals
dc.keywordsWavelet coefficients
dc.keywordsData reduction
dc.keywordsFrequencies
dc.keywordsMarkov processes
dc.keywordsSpurious signal noise
dc.keywordsVectors
dc.keywordsWavelet transforms
dc.keywordsSpeech recognition
dc.languageTurkish
dc.publisherIEEE
dc.sourceProceedings of the IEEE 12th Signal Processing and Communications Applications Conference, SIU 2004
dc.subjectElectrical electronics engineering
dc.titleRobust speech recognition using adaptively denoised wavelet coefficients
dc.title.alternativeUyarlanabilir gürültü temizleme ile dayanıklı ses tanıma
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.authorid0000-0002-2715-2368
local.contributor.authorid0000-0002-0663-1677
local.contributor.kuauthorTekalp, Ahmet Murat
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorAkyol, Emrah
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files