Publication: Route to supersolidity for the extended Bose-Hubbard model
Files
Program
KU-Authors
KU Authors
Co-Authors
Advisor
Publication Date
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Abstract
We use the Gutzwiller ansatz and analyze the phase diagram of the extended Bose-Hubbard Hamiltonian with on-site (U) and nearest-neighbor (V ) repulsions. For d-dimensional hypercubic lattices, when 2dV < U, it is well known that the ground state alternates between the charge-density-wave (CDW) and Mott insulators, and the supersolid (SS) phase occupies small regions around the CDW insulators. However, when 2dV > U, in this Rapid Communication, we show that the ground state has only CDW insulators, and more importantly, the SS phase occupies a much larger region in the phase diagram, existing up to very large hopping values which could be orders of magnitude higher than that of the well-known case. In particular, the SS-superfluid phase boundary increases linearly as a function of hopping when 2dV 1.5U, for which the prospects of observing the SS phase with dipolar Bose gases loaded into optical lattices is much higher.
Source:
Physical Review A
Publisher:
American Physical Society (APS)
Keywords:
Subject
Mathematics