Publication:
A partial kite system of order n can be embedded in a kite system of order 8n+9

dc.contributor.coauthorLindner, Charles Curtis
dc.contributor.coauthorRodger, C.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorKüçükçifçi, Selda
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid105252
dc.date.accessioned2024-11-09T23:13:44Z
dc.date.issued2006
dc.description.abstractIn this paper, it is shown that a partial edge-disjoint decompostion of K-n into kites (that is, into copies of K-3 with a pendant edge attached) can be embedded in a complete edge-disjoint decompostion of K4t+9 into kites for all even t >= 2n. The proof requires first proving another interesting result, a generalization of an embeddding result on symmetric latin squares by L. D. Andersen, following a result by A. Cruse.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume79
dc.identifier.doiN/A
dc.identifier.eissnN/A
dc.identifier.issn0381-7032
dc.identifier.quartileQ4
dc.identifier.uriN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/10039
dc.identifier.wos237372700022
dc.keywordsCycle systems
dc.languageEnglish
dc.publisherCharles Babbage Res Ctr
dc.sourceArs Combinatoria
dc.subjectMathematics
dc.titleA partial kite system of order n can be embedded in a kite system of order 8n+9
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-4954-3116
local.contributor.kuauthorKüçükçifçi, Selda
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files