Publication:
In silico analysis of rib force distribution in postscapulothoracic arthrodesis model

Thumbnail Image

School / College / Institute

Organizational Unit
Organizational Unit
SCHOOL OF MEDICINE
Upper Org Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Scapulothoracic arthrodesis (STA) is carried out by fixing the scapula to thoracic ribs which in turn allows the patient suffering from Facioscapulohumeral Muscular Dystrophy to carry out shoulder-joint dependent activities of daily living. A biomechanical analysis of this procedure has not been conducted in the literature and, for the first time, this study investigates the finite element calculated glenohumeral-applied load distributions on ribs by creating a post-STA model. Three loading directions on the glenohumeral joint are designated: anterior-posterior, superior-inferior, and lateral-medial. Reaction forces on the ribs are calculated based on the glenoid force percent. Simulations are repeated by removing a singular rib contact to observe the change in force distributions in the case of missing levels or failed bonding as well as the impact of clavicle osteotomy. Total load distribution is observed highest at T2 followed by T3 and T6. In the T2 missing scenario, total loads on T3 and T4 increase. In the T4 missing case, the most affected level is T3. In the T6 missing scenario, total loads on T5 and T7 increase. In the clavicular osteotomy scenario, all levels' loads increase; the highest is recorded in T7 by 460%, followed by T5, T4, T2, T6, and T3. While all levels contribute to fixation strength, T2 is subjected to the highest loads, and, in the missing level scenarios, the loads are tolerated sufficiently by the remaining levels. Missing T4 scenario has the least effect on the system, which is interpreted as potentially the only skippable level of fixation. Clavicular osteotomy has the highest effect on the arthrodesis site.

Source

Publisher

Wiley

Subject

Orthopedics

Citation

Has Part

Source

Journal of Orthopaedic Research

Book Series Title

Edition

DOI

10.1002/jor.25771

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

3

Views

5

Downloads

View PlumX Details