Publication:
On the accuracy of uniform polyhedral approximations of the copositive cone

dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorYıldırım, Emre Alper
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Industrial Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T11:54:57Z
dc.date.issued2012
dc.description.abstractWe consider linear optimization problems over the cone of copositive matrices. Such conic optimization problems, called copositive programs, arise from the reformulation of a wide variety of difficult optimization problems. We propose a hierarchy of increasingly better outer polyhedral approximations to the copositive cone. We establish that the sequence of approximations is exact in the limit. By combining our outer polyhedral approximations with the inner polyhedral approximations due to de Klerk and Pasechnik [SIAM J. Optim. 12 (2002), pp. 875-892], we obtain a sequence of increasingly sharper lower and upper bounds on the optimal value of a copositive program. Under primal and dual regularity assumptions, we establish that both sequences converge to the optimal value. For standard quadratic optimization problems, we derive tight bounds on the gap between the upper and lower bounds. We provide closed-form expressions of the bounds for the maximum stable set problem. Our computational results shed light on the quality of the bounds on randomly generated instances.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK))
dc.description.versionAuthor's final manuscript
dc.description.volume27
dc.formatpdf
dc.identifier.doi10.1080/10556788.2010.540014
dc.identifier.eissn1029-4937
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00259
dc.identifier.issn1055-6788
dc.identifier.linkhttps://doi.org/10.1080/10556788.2010.540014
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84855926606
dc.identifier.urihttps://hdl.handle.net/20.500.14288/812
dc.identifier.wos302315500009
dc.keywordsOperations research and management science
dc.keywordsApplied mathematics
dc.keywordsCopositive cone
dc.keywordsCompletely positive cone
dc.keywordsStandard quadratic optimization
dc.keywordsMaximum stable set
dc.languageEnglish
dc.publisherTaylor _ Francis
dc.relation.grantno109M149
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1284
dc.sourceOptimization Methods and Software
dc.subjectComputer science
dc.subjectSoftware Engineering
dc.titleOn the accuracy of uniform polyhedral approximations of the copositive cone
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorYıldırım, Emre Alper
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd6d00f52-d22d-4653-99e7-863efcd47b4a

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1284.pdf
Size:
219.78 KB
Format:
Adobe Portable Document Format