Publication: Role of audio in video summarization
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.kuauthor | Shoer, İbrahim | |
dc.contributor.kuauthor | Köprü, Berkay | |
dc.contributor.kuauthor | Erzin, Engin | |
dc.contributor.other | Department of Computer Engineering | |
dc.contributor.researchcenter | Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI) | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.date.accessioned | 2024-12-29T09:36:02Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Video summarization attracts attention for efficient video representation, retrieval, and browsing to ease volume and traffic surge problems. Although video summarization mostly uses the visual channel for compaction, the benefits of audio-visual modeling appeared in recent literature. The information coming from the audio channel can be a result of audio-visual correlation in the video content. In this study, we propose a new audio-visual video summarization framework integrating four ways of audio-visual information fusion with GRU-based and attention-based networks. Furthermore, we investigate a new explainability methodology using audio-visual canonical correlation analysis (CCA) to better understand and explain the role of audio in the video summarization task. Experimental evaluations on the TVSum dataset attain F1 score and Kendall-tau score improvements for the audio-visual video summarization. Furthermore, splitting video content on TVSum and COGNIMUSE datasets based on audio-visual CCA as positively and negatively correlated videos yields a strong performance improvement over the positively correlated videos for audio-only and audio-visual video summarization. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.publisherscope | International | |
dc.identifier.doi | 10.1109/ICASSPW59220.2023.10192578 | |
dc.identifier.isbn | 979-8-3503-0261-5 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85168238207 | |
dc.identifier.uri | https://doi.org/10.1109/ICASSPW59220.2023.10192578 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/21907 | |
dc.identifier.wos | 1046933700001 | |
dc.keywords | Audio-visual video summarization | |
dc.keywords | Canonical correlation analysis | |
dc.language | en | |
dc.publisher | IEEE | |
dc.source | 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops, ICASSPW | |
dc.subject | Acoustics | |
dc.subject | Computer science | |
dc.subject | Interdisciplinary applications | |
dc.subject | Electrical engineering | |
dc.subject | Electronic engineering | |
dc.subject | Imaging science and photographic technology | |
dc.title | Role of audio in video summarization | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Shoer, İbrahim | |
local.contributor.kuauthor | Köprü, Berkay | |
local.contributor.kuauthor | Erzin, Engin | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae |