Publication:
ScType enables fast and accurate cell type identification from spatial transcriptomics data

dc.contributor.coauthorNader, Kristen
dc.contributor.coauthorT Ianevski, Aleksandr
dc.contributor.coauthorErickson, Andrew
dc.contributor.coauthorVerschuren, Emmy W.
dc.contributor.coauthorAittokallio, Tero
dc.contributor.coauthorMiihkinen, Mitro
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorTaşçı, Mısra
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-12-29T09:36:37Z
dc.date.issued2024
dc.description.abstractThe limited resolution of spatial transcriptomics (ST) assays in the past has led to the development of cell type annotation methods that separate the convolved signal based on available external atlas data. In light of the rapidly increasing resolution of the ST assay technologies, we made available and investigated the performance of a deconvolution-free marker-based cell annotation method called scType. In contrast to existing methods, the spatial application of scType does not require computationally strenuous deconvolution, nor large single-cell reference atlases. We show that scType enables ultra-fast and accurate identification of abundant cell types from ST data, especially when a large enough panel of genes is detected. Examples of such assays are Visium and Slide-seq, which currently offer the best trade-off between high resolution and number of genes detected by the assay for cell type annotation. Availability and implementation: scType source R and python codes for spatial data are openly available in GitHub (https://github.com/kris-nader/sp-type or https://github.com/kris-nader/sc-type-py). Step-by-step tutorials for R and python spatial data analysis can be found in https://github.com/kris-nader/sp-type and https://github.com/kris-nader/sc-type-py/blob/main/spatial_tutorial.md, respectively.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue7
dc.description.openaccessgold
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThis work was supported by grants from Sakari Alhopuro foundation (MM) and Academy of Finland [grants 340141, 344698, 345803 to T.A.]; the Cancer Foundation Finland [to T.A. and E.W.V.]; the Norwegian Cancer Society [to T.A.]; the Sigrid Juselius Foundation [to T.A.]; iCAN-Digital Precision Cancer Medicine Flagship [iCAN-MULTIDRUG to K.N., A.I., E.W.V., T.A., and M.M.]; and the Nordic EMBL Partnership Hub for Molecular Medicine, NordForsk [grant #96782 to K.N.].
dc.description.volume40
dc.identifier.doi10.1093/bioinformatics/btae426
dc.identifier.eissn1367-4811
dc.identifier.issn1367-4803
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85198392048
dc.identifier.urihttps://doi.org/10.1093/bioinformatics/btae426
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22088
dc.identifier.wos1266036400006
dc.keywordsBiochemical Research Methods
dc.keywordsBiotechnology and Applied Microbiology
dc.keywordsComputer Science, Interdisciplinary Applications
dc.keywordsMathematical and Computational Biology
dc.keywordsStatistics and Probability
dc.language.isoeng
dc.publisherOxford Univ Press
dc.relation.ispartofBioinformatics
dc.subjectBiochemical research methods
dc.titleScType enables fast and accurate cell type identification from spatial transcriptomics data
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorTaşçı, Mısra
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04733.pdf
Size:
2.51 MB
Format:
Adobe Portable Document Format