Publication: ScType enables fast and accurate cell type identification from spatial transcriptomics data
dc.contributor.coauthor | Nader, Kristen | |
dc.contributor.coauthor | T Ianevski, Aleksandr | |
dc.contributor.coauthor | Erickson, Andrew | |
dc.contributor.coauthor | Verschuren, Emmy W. | |
dc.contributor.coauthor | Aittokallio, Tero | |
dc.contributor.coauthor | Miihkinen, Mitro | |
dc.contributor.department | School of Medicine | |
dc.contributor.kuauthor | Taşçı, Mısra | |
dc.contributor.schoolcollegeinstitute | SCHOOL OF MEDICINE | |
dc.date.accessioned | 2024-12-29T09:36:37Z | |
dc.date.issued | 2024 | |
dc.description.abstract | The limited resolution of spatial transcriptomics (ST) assays in the past has led to the development of cell type annotation methods that separate the convolved signal based on available external atlas data. In light of the rapidly increasing resolution of the ST assay technologies, we made available and investigated the performance of a deconvolution-free marker-based cell annotation method called scType. In contrast to existing methods, the spatial application of scType does not require computationally strenuous deconvolution, nor large single-cell reference atlases. We show that scType enables ultra-fast and accurate identification of abundant cell types from ST data, especially when a large enough panel of genes is detected. Examples of such assays are Visium and Slide-seq, which currently offer the best trade-off between high resolution and number of genes detected by the assay for cell type annotation. Availability and implementation: scType source R and python codes for spatial data are openly available in GitHub (https://github.com/kris-nader/sp-type or https://github.com/kris-nader/sc-type-py). Step-by-step tutorials for R and python spatial data analysis can be found in https://github.com/kris-nader/sp-type and https://github.com/kris-nader/sc-type-py/blob/main/spatial_tutorial.md, respectively. | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 7 | |
dc.description.openaccess | gold | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | This work was supported by grants from Sakari Alhopuro foundation (MM) and Academy of Finland [grants 340141, 344698, 345803 to T.A.]; the Cancer Foundation Finland [to T.A. and E.W.V.]; the Norwegian Cancer Society [to T.A.]; the Sigrid Juselius Foundation [to T.A.]; iCAN-Digital Precision Cancer Medicine Flagship [iCAN-MULTIDRUG to K.N., A.I., E.W.V., T.A., and M.M.]; and the Nordic EMBL Partnership Hub for Molecular Medicine, NordForsk [grant #96782 to K.N.]. | |
dc.description.volume | 40 | |
dc.identifier.doi | 10.1093/bioinformatics/btae426 | |
dc.identifier.eissn | 1367-4811 | |
dc.identifier.issn | 1367-4803 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85198392048 | |
dc.identifier.uri | https://doi.org/10.1093/bioinformatics/btae426 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/22088 | |
dc.identifier.wos | 1266036400006 | |
dc.keywords | Biochemical Research Methods | |
dc.keywords | Biotechnology and Applied Microbiology | |
dc.keywords | Computer Science, Interdisciplinary Applications | |
dc.keywords | Mathematical and Computational Biology | |
dc.keywords | Statistics and Probability | |
dc.language.iso | eng | |
dc.publisher | Oxford Univ Press | |
dc.relation.ispartof | Bioinformatics | |
dc.subject | Biochemical research methods | |
dc.title | ScType enables fast and accurate cell type identification from spatial transcriptomics data | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Taşçı, Mısra | |
local.publication.orgunit1 | SCHOOL OF MEDICINE | |
local.publication.orgunit2 | School of Medicine | |
relation.isOrgUnitOfPublication | d02929e1-2a70-44f0-ae17-7819f587bedd | |
relation.isOrgUnitOfPublication.latestForDiscovery | d02929e1-2a70-44f0-ae17-7819f587bedd | |
relation.isParentOrgUnitOfPublication | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e |
Files
Original bundle
1 - 1 of 1