Publication:
Transcriptomic response of yeast cells to ATX1 deletion under different copper levels

Thumbnail Image

Organizational Units

Program

KU-Authors

KU Authors

Co-Authors

Cankorur-Çetinkaya, Ayça
Eraslan, Serpil
Kırdar, Betül

Advisor

Publication Date

Language

English

Journal Title

Journal ISSN

Volume Title

Abstract

Background: Iron and copper homeostatic pathways are tightly linked since copper is required as a cofactor for high affinity iron transport. Atx1p plays an important role in the intracellular copper transport as a copper chaperone transferring copper from the transporters to Ccc2p for its subsequent insertion into Fet3p, which is required for high affinity iron transport. Results: In this study, genome-wide transcriptional landscape of ATX1 deletants grown in media either lacking copper or having excess copper was investigated. ATX1 deletants were allowed to recover full respiratory capacity in the presence of excess copper in growth environment. The present study revealed that iron ion homeostasis was not significantly affected by the absence of ATX1 either at the transcriptional or metabolic levels, suggesting other possible roles for Atx1p in addition to its function as a chaperone in copper-dependent iron absorption. The analysis of the transcriptomic response of atx1 Delta/atx1 Delta and its integration with the genetic interaction network highlighted for the first time, the possible role of ATX1 in cell cycle regulation, likewise its mammalian counterpart ATOX1, which was reported to play an important role in the copper-stimulated proliferation of non-small lung cancer cells. Conclusions: The present finding revealed the dispensability of Atx1p for the transfer of copper ions to Ccc2p and highlighted its possible role in the cell cycle regulation. The results also showed the potential of Saccharomyces cerevisiae as a model organism in studying the capacity of ATOX1 as a therapeutic target for lung cancer therapy.

Source:

BMC Genomics

Publisher:

BioMed Central

Keywords:

Subject

Biotechnology and applied microbiology, Genetics and heredity

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyrights Note

0

Views

1

Downloads

View PlumX Details