Publication:
Automatic subject identification using scale-based ballistocardiogram signals

dc.contributor.coauthorShandhi, Md Mobashir Hasan
dc.contributor.coauthorOrlandic, Lara
dc.contributor.coauthorMooney, Vincent J.
dc.contributor.coauthorInan, Omer T.
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorGürsoy, Mehmet Emre
dc.contributor.kuauthorGürsoy, Beren Semiz
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid330368
dc.contributor.yokid332403
dc.date.accessioned2024-11-09T23:00:50Z
dc.date.issued2022
dc.description.abstractMany electronic devices such as weighing scales, fitness equipment and medical devices are nowadays shared by multiple users. In such devices, automatic identification of device users becomes an important step towards improved user convenience and personalized service. In this paper, we propose a novel approach for subject identification using ballistocardiogram (BCG) signals collected unobtrusively from a modified weighing scale. Our approach first segments BCG signals into heartbeats using signal filtering and beat detection techniques, and averages beats to obtain smoother ensemble averaged BCG frames that are more robust to noise. Second, it extracts features related to subjects’ cardiovascular performance and musculoskeletal system from their BCG frames. Finally, it trains a machine learning model for predicting the owner of an unlabeled BCG recording based on its features. We evaluated our approach through a pilot experimental study with subjects’ BCG signals recorded at rest and following different physiological modulation. Our approach achieves up to 97% identification accuracy at rest conditions and incurs a 15–20% accuracy drop on average under physiological modulation. © 2022, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume440 LNICST
dc.identifier.doi10.1007/978-3-031-06368-8_19
dc.identifier.isbn9783-0310-6367-1
dc.identifier.issn1867-8211
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85133004791&doi=10.1007%2f978-3-031-06368-8_19&partnerID=40&md5=1c3a212fa2f56a27cd9bee783e122b65
dc.identifier.scopus2-s2.0-85133004791
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-031-06368-8_19
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8133
dc.keywordsBallistocardiography
dc.keywordsBiometrics
dc.keywordsMachine learning
dc.keywordsSubject identification Automation
dc.keywordsLearning systems
dc.keywordsMachine learning
dc.keywordsMusculoskeletal system
dc.keywordsWeighing
dc.keywordsAt rests
dc.keywordsAutomatic identification
dc.keywordsBallistocardiography
dc.keywordsElectronics devices
dc.keywordsFitness equipments
dc.keywordsMachine-learning
dc.keywordsMedical Devices
dc.keywordsMultiple user
dc.keywordsPersonalized service
dc.keywordsSubject identification
dc.keywordsModulation
dc.languageEnglish
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.sourceLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
dc.subjectBallistocardiography
dc.subjectBreathing rate
dc.subjectSensor
dc.titleAutomatic subject identification using scale-based ballistocardiogram signals
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7676-0167
local.contributor.authorid0000-0002-7544-5974
local.contributor.kuauthorGürsoy, Mehmet Emre
local.contributor.kuauthorGürsoy, Beren Semiz
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files