Publication:
Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability

dc.contributor.coauthorZhang, Mingchao
dc.contributor.coauthorPal, Aniket
dc.contributor.coauthorZheng, Zhiqiang
dc.contributor.coauthorGardi, Gaurav
dc.contributor.coauthorYildiz, Erdost
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.date.accessioned2024-12-29T09:40:35Z
dc.date.issued2023
dc.description.abstractStimuli-responsive geometric transformations endow metamaterials with dynamic properties and functionalities. However, using existing transformation mechanisms to program a single geometry to transform into diverse final configurations remains challenging, imposing crucial design restrictions on achieving versatile functionalities. Here, we present a programmable strategy for wide-spectrum reconfigurable micro-metastructures using linearly responsive transparent hydrogels as artificial muscles. Actuated by the hydrogel, the transformation of micro-metastructures arises from the collaborative buckling of their building blocks. Rationally designing the three-dimensional printing parameters and geometry features of the metastructures enables their locally isotropic or anisotropic deformation, allowing controllable wide-spectrum pattern transformation with programmable chirality and optical anisotropy. This reconfiguration mechanism can be applied to various materials with a wide range of mechanical properties. Our strategy enables a thermally reconfigurable printed metalattice with pixel-by-pixel mapping of different printing powers and angles for displaying or hiding complex information, providing opportunities for encryption, miniature robotics, photonics and phononics applications. It is difficult to program a single stimuli-responsive geometry to transform into diverse final configurations in a systematic manner. Here, linearly responsive transparent hydrogels are developed to create micro-metastructures with wide-spectrum thermal reconfigurability.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue10
dc.description.openaccesshybrid, Green Published
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorsWe thank M. Li, J. Kim, M.T.A. Khan, U. Bozuyuk and A. Aydin for their help in instrument use and technical assistance. We thank Z. Yin for his useful discussion on the theoretic model. This work was funded by the Max Planck Society, European Research Council Advanced Grant SoMMoR project with grant no. 834531 (M.S.), Alexander Von Humboldt Foundation (M.Z. and A.P.), International Max Planck Research School for Intelligent Systems (G.G.) and EU Horizon 2020 Marie Sklodowska-Curie Actions with grant no. 101059593 (E.Y.).
dc.description.volume22
dc.identifier.doi10.1038/s41563-023-01649-3
dc.identifier.eissn1476-4660
dc.identifier.issn1476-1122
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85168325246
dc.identifier.urihttps://doi.org/10.1038/s41563-023-01649-3
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23385
dc.identifier.wos1052548100004
dc.keywords3d printing
dc.keywordsAnisotropy
dc.keywordsCryptography
dc.keywordsGeometry
dc.keywordsMuscle
dc.keywordsPixels
dc.languageen
dc.publisherNature Portfolio
dc.relation.grantnoMax Planck Society
dc.relation.grantnoEuropean Research Council Advanced Grant SoMMoR project [834531]
dc.relation.grantnoAlexander Von Humboldt Foundation
dc.relation.grantnoInternational Max Planck Research School for Intelligent Systems
dc.relation.grantnoEU [101059593]
dc.relation.grantnoMarie Curie Actions (MSCA) [101059593] Funding Source: Marie Curie Actions (MSCA)
dc.sourceNature Materials
dc.subjectChemistry
dc.subjectPhysical
dc.subjectMaterials science, Multidisciplinary
dc.subjectPhysics
dc.subjectApplied
dc.subjectPhysics
dc.subjectCondensed matter
dc.titleHydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files