Publication: Averaged vs. quenched large deviations and entropy for random walk in a dynamic random environment
dc.contributor.coauthor | Rassoul-Agha, Firas | |
dc.contributor.coauthor | Seppalainen, Timo | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Yılmaz, Atilla | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Mathematics | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.contributor.yokid | 26605 | |
dc.date.accessioned | 2024-11-09T12:28:07Z | |
dc.date.issued | 2017 | |
dc.description.abstract | We consider random walk with bounded jumps on a hypercubic lattice of arbitrary dimension in a dynamic random environment. The environment is temporally independent and spatially translation invariant. We study the rate functions of the level-3 averaged and quenched large deviation principles from the point of view of the particle. In the averaged case the rate function is a specific relative entropy, while in the quenched case it is a Donsker-Varadhan type relative entropy for Markov processes. We relate these entropies to each other and seek to identify the minimizers of the level-3 to level-1 contractions in both settings. Motivation for this work comes from variational descriptions of the quenched free energy of directed polymer models where the same Markov process entropy appears. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | EU | |
dc.description.sponsorship | National Science Foundation | |
dc.description.sponsorship | Simons Foundation | |
dc.description.sponsorship | Wisconsin Alumni Research Foundation | |
dc.description.sponsorship | European Union | |
dc.description.version | Publisher version | |
dc.description.volume | 22 | |
dc.format | ||
dc.identifier.doi | 10.1214/17-EJP74 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR01461 | |
dc.identifier.issn | 1083-6489 | |
dc.identifier.link | https://doi.org/10.1214/17-EJP74 | |
dc.identifier.quartile | Q3 | |
dc.identifier.scopus | 2-s2.0-85023595137 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/1791 | |
dc.identifier.wos | 404789400002 | |
dc.keywords | Random walk | |
dc.keywords | Dynamic random environment | |
dc.keywords | Large deviations | |
dc.keywords | Averaged | |
dc.keywords | Quenched | |
dc.keywords | Empirical process | |
dc.keywords | Donsker-Varadhan relative entropy | |
dc.keywords | Specific relative entropy | |
dc.keywords | Doob h-transform | |
dc.keywords | Nonstationary process | |
dc.keywords | Markov process expectations | |
dc.keywords | Sure invariance-principle | |
dc.keywords | Mixing random environment | |
dc.keywords | Asymptotic evaluation | |
dc.keywords | Large time | |
dc.keywords | Random potentials | |
dc.keywords | Variational formulas | |
dc.keywords | Free-energy | |
dc.keywords | Disorder | |
dc.keywords | Polymer | |
dc.language | English | |
dc.publisher | University of Washington Press | |
dc.relation.grantno | DMS-1407574 | |
dc.relation.grantno | DMS-1306777 | |
dc.relation.grantno | DMS-1602486 | |
dc.relation.grantno | 306576 | |
dc.relation.grantno | 338287 | |
dc.relation.grantno | 322078 | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/4519 | |
dc.source | Electronic Journal of Probability | |
dc.subject | Mathematics | |
dc.title | Averaged vs. quenched large deviations and entropy for random walk in a dynamic random environment | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Yılmaz, Atilla | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe |
Files
Original bundle
1 - 1 of 1