Publication:
Simulating human single motor units using self-organizing agents

dc.contributor.coauthorGürcan, Önder
dc.contributor.coauthorBernon, Carole
dc.contributor.coauthorMano, Jean-Pierre
dc.contributor.coauthorGlize, Pierre
dc.contributor.coauthorDikenelli, Oğuz
dc.contributor.kuauthorTürker, Kemal Sıtkı
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid6741
dc.date.accessioned2024-11-09T23:26:59Z
dc.date.issued2012
dc.description.abstractUnderstanding functional synaptic connectivity of human central nervous system is one of the holy grails of the neuroscience. Due to the complexity of nervous system, it is common to reduce the problem to smaller networks such as motor unit pathways. In this sense, we designed and developed a simulation model that learns acting in the same way of human single motor units by using findings on human subjects. The developed model is based on self-organizing agents whose nominal and cooperative behaviors are based on the current knowledge on biological neural networks. The results show that the simulation model generates similar functionality with the observed data.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipIEEE
dc.description.sponsorshipIEEE Communications Society
dc.description.sponsorshipUniversite Jean Moulin Lyon 3, Ecole Universitaire de Management
dc.description.sponsorshipEcole Nationale Superieure des Mines
dc.description.sponsorshipUCLB Lyon 1
dc.identifier.doi10.1109/SASO.2012.18
dc.identifier.isbn9780-7695-4851-7
dc.identifier.issn1949-3673
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84873547362anddoi=10.1109%2fSASO.2012.18andpartnerID=40andmd5=37d03659dcee6a2e0b8ce38b11cfcabf
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84873547362
dc.identifier.urihttp://dx.doi.org/10.1109/SASO.2012.18
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11643
dc.keywordsBiological neural networks
dc.keywordsSelf-wiring biological neural networks
dc.keywordsCo-operative behaviors
dc.keywordsDeveloped model
dc.keywordsHuman central nervous systems
dc.keywordsHuman subjects
dc.keywordsMotor unit
dc.keywordsObserved data
dc.keywordsSelf organizing
dc.keywordsself-wiring
dc.keywordsSimulation model
dc.keywordsSynaptic connectivity
dc.keywordsComplex networks
dc.keywordsComputer simulation
dc.keywordsCybernetics
dc.keywordsNeural networks
dc.keywordsBehavioral research
dc.languageEnglish
dc.publisherIEEE
dc.sourceInternational Conference on Self-Adaptive and Self-Organizing Systems, SASO
dc.subjectNeural networks (Neurobiology)
dc.subjectNeurobiology
dc.subjectNeural networks (Computer science)
dc.titleSimulating human single motor units using self-organizing agents
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0001-9962-075X
local.contributor.kuauthorTürker, Kemal Sıtkı

Files