Publication:
A note on the kadison-singer problem

dc.contributor.coauthorAkemann, Charles A.
dc.contributor.coauthorTanbay, Betül
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÜlger, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:34:48Z
dc.date.issued2010
dc.description.abstractLet H be a separable Hilbert space with a fixed orthonormal basis (e(n)) n >= 1 and B(H) be the full von Neumann algebra of the bounded linear operators T : H -> H. identifying l(infinity) = C(beta N) with the diagonal operators, we consider C(beta N) as a subalgebra of B(H). For each t is an element of beta N, let [delta(t)] be the set of the states of B(H) that extend the Dirac measure delta(t). Our main result shows that, for each t in beta N, the set [delta(t)] either lies in a finite dimensional subspace of B(H)* or else it must contain a homeomorphic copy of beta N.
dc.description.indexedbyWOS
dc.description.issue2
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipIMBM, Istanbul Center for Mathematical Sciences This work of the authors has been supported in part by IMBM, Istanbul Center for Mathematical Sciences.
dc.description.volume63
dc.identifier.issn0379-4024
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-77955046497
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12413
dc.identifier.wos280880900008
dc.keywordsPure State Extension
dc.keywordsKadison-Singer Problem Pure States
dc.keywordsNorm Obe
dc.keywordsExtensions
dc.keywordsAlgebras
dc.keywordsProjections
dc.keywordsSpace
dc.language.isoeng
dc.publisherTheta Foundation
dc.relation.ispartofJournal of Operator Theory
dc.subjectMathematics
dc.titleA note on the kadison-singer problem
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÜlger, Ali
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files