Publication:
Effect of composition on the spontaneous emission probabilities, stimulated emission cross-sections and local environment of Tm3+ in TeO2–WO3 glass

Placeholder

Organizational Units

Program

KU Authors

Co-Authors

Ozen, G
Aydinli, A
Cenk, S

Advisor

Publication Date

Language

English

Journal Title

Journal ISSN

Volume Title

Abstract

Effect of composition on the structure, spontaneous and stimulated emission probabilities of various 1.0 mol% Tm2O3 doped (1 - x)TeO2 + (x)WO3 glasses were investigated using Raman spectroscopy, ultraviolet-visible-near-infrared (UV/VIS/NIR) absorption and luminescence measurements. Absorption measurements in the UV/VIS/NIR region were used to determine spontaneous emission probabilities for the 4f-4f transitions of Tm3+ ions. Six absorption bands corresponding to the absorption of the (1)G(4), F-3(2), F-3(3) and F-3(4), H-3(5) and H-3(4) levels from the H-3(6) ground level were observed. Integrated absorption cross-section of each band except that of H-3(5) level was found to vary with the glass composition. Luminescence spectra of the samples were measured upon 457.9 nm excitation. Three emission bands centered at 476 nm ((1)G(4) --> H-3(6) transition), 651 nm ((1)G(4) --> H-3(4) transition) and 800 nm ((1)G(4) --> H-3(5) transition) were observed. Spontaneous emission cross-sections together with the luminescence spectra measured upon 457.9 nm excitation were used to determine the stimulated emission cross-sections of these emissions. The effect of glass composition on the Judd-Ofelt parameters and therefore on the spontaneous and the stimulated emission cross-sections for the metastable levels of Tm3+ ions were discussed in detail. The effect of temperature on the stimulated emission cross-sections for the emissions observed upon 457.9 nm excitation was also discussed.

Source:

Journal of Luminescence

Publisher:

Elsevier

Keywords:

Subject

Optics

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyrights Note

0

Views

0

Downloads

View PlumX Details