Publication:
Interpretable and integrative analysis of single-cell multiomics with scMKL

dc.contributor.coauthorKupp, Samuel D.
dc.contributor.coauthorVanGordon, Ian A.
dc.contributor.coauthorGonen, Mehmet
dc.contributor.coauthorEsener, Sadik
dc.contributor.coauthorEksi, Sebnem Ece
dc.contributor.coauthorAk, Cigdem
dc.contributor.departmentSchool of Medicine
dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorFaculty Member, Gönen, Mehmet
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-09-10T04:57:36Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractThe rapid advancement of single-cell technologies has led to the development of various analysis methods, each with trade-offs between predictive power and interpretability particularly for multimodal data integration. Complex machine learning models achieve high accuracy, but they often lack transparency, while simpler models are more interpretable but less effective for prediction. In this manuscript, we introduce an innovative method for single-cell analysis using Multiple Kernel Learning (scMKL), that merges the predictive capabilities of complex models with the interpretability of linear approaches, aimed at providing actionable insights from single-cell multiomics data. scMKL excels at classifying healthy and cancerous cell populations across multiple cancer types, utilizing data from single-cell RNA sequencing, ATAC sequencing, and 10x Multiome. It outperforms existing methods while delivering interpretable results that identify key transcriptomic and epigenetic features, as well as multimodal pathways- that existing methods have failed to achieve, in breast, lymphatic, prostate, and lung cancers. Leveraging insights from one dataset to inform analysis in a new dataset, scMKL uncovers biological pathways that distinguish treatment responses in breast cancer, low-grade from high-grade prostate tumors, and subtypes in lung cancer, thereby enhancing our understanding of cancer biology and tumor progression.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipOffice of Research Infrastructure Programs, Office Of The Director, of the National Institutes of Health [S10OD034224]; Cancer Early Detection Advanced Research Center (CEDAR) [2022-1492]; Knight Cancer Institute
dc.description.versionPublished Version
dc.description.volume8
dc.identifier.doi10.1038/s42003-025-08533-7
dc.identifier.eissn2399-3642
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06446
dc.identifier.issue1
dc.identifier.quartileN/A
dc.identifier.urihttps://doi.org/10.1038/s42003-025-08533-7
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30268
dc.identifier.wos001546343300003
dc.language.isoeng
dc.publisherNature Portfolio
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofCommunications biology
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBiology
dc.subjectMultidisciplinary Sciences
dc.titleInterpretable and integrative analysis of single-cell multiomics with scMKL
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06446.pdf
Size:
7.5 MB
Format:
Adobe Portable Document Format