Publication: Fixation count prediction for textural scenes
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.department | N/A | |
dc.contributor.kuauthor | Sezgin, Tevfik Metin | |
dc.contributor.kuauthor | Tümen, Recep Sinan | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.kuprofile | PhD Student | |
dc.contributor.other | Department of Computer Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.yokid | 18632 | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T23:04:52Z | |
dc.date.issued | 2010 | |
dc.description.abstract | The human eye collects visual information by means of saccades and fixations. Recent work shows that fixation locations are not arbitrary. On the contrary, they tend to cluster on the salient regions of the scene. Automatic estimation of the number of fixations on an image has uses in many applications and contexts including computer vision (e.g., robot vision, compression, salience estimation) and human-computer interaction (e.g interface usability assessment). In this study, we present an algorithm for estimating the number of fixations on parts of an image based on local descriptors using supervised regression models on the DOVES eye movements dataset. Our results suggest that in the absence of contextual information, local descriptors can be used to generate a reasonably accurate fixation intensity map of an image. | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.identifier.doi | 10.1109/SIU.2010.5652724 | |
dc.identifier.isbn | 9781-4244-9671-6 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651423321anddoi=10.1109%2fSIU.2010.5652724andpartnerID=40andmd5=310a3e582307aa4bd2b77d71d27bbc47 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-78651423321 | |
dc.identifier.uri | http://dx.doi.org/10.1109/SIU.2010.5652724 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/8712 | |
dc.keywords | Automatic estimation | |
dc.keywords | Contextual information | |
dc.keywords | Data sets | |
dc.keywords | Human eye | |
dc.keywords | Image-based | |
dc.keywords | Interface usability | |
dc.keywords | Local descriptors | |
dc.keywords | Regression model | |
dc.keywords | Robot vision | |
dc.keywords | Salient regions | |
dc.keywords | Visual information | |
dc.keywords | Computer vision | |
dc.keywords | Estimation | |
dc.keywords | Human computer interaction | |
dc.keywords | Human robot interaction | |
dc.keywords | Interfaces (computer) | |
dc.keywords | Knowledge management | |
dc.keywords | Regression analysis | |
dc.keywords | Signal processing | |
dc.keywords | Visual communication | |
dc.keywords | Eye movements | |
dc.language | Turkish | |
dc.publisher | IEEE | |
dc.source | SIU 2010 - IEEE 18th Signal Processing and Communications Applications Conference | |
dc.subject | Computer engineering | |
dc.title | Fixation count prediction for textural scenes | |
dc.title.alternative | Dokusal görüntüler için odaklanma sayısının tahmini | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-1524-1646 | |
local.contributor.authorid | 0000-0002-5916-3088 | |
local.contributor.kuauthor | Sezgin, Tevfik Metin | |
local.contributor.kuauthor | Tümen, Recep Sinan | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae |