Publication:
Fixation count prediction for textural scenes

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorSezgin, Tevfik Metin
dc.contributor.kuauthorTümen, Recep Sinan
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid18632
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:04:52Z
dc.date.issued2010
dc.description.abstractThe human eye collects visual information by means of saccades and fixations. Recent work shows that fixation locations are not arbitrary. On the contrary, they tend to cluster on the salient regions of the scene. Automatic estimation of the number of fixations on an image has uses in many applications and contexts including computer vision (e.g., robot vision, compression, salience estimation) and human-computer interaction (e.g interface usability assessment). In this study, we present an algorithm for estimating the number of fixations on parts of an image based on local descriptors using supervised regression models on the DOVES eye movements dataset. Our results suggest that in the absence of contextual information, local descriptors can be used to generate a reasonably accurate fixation intensity map of an image.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/SIU.2010.5652724
dc.identifier.isbn9781-4244-9671-6
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-78651423321anddoi=10.1109%2fSIU.2010.5652724andpartnerID=40andmd5=310a3e582307aa4bd2b77d71d27bbc47
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-78651423321
dc.identifier.urihttp://dx.doi.org/10.1109/SIU.2010.5652724
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8712
dc.keywordsAutomatic estimation
dc.keywordsContextual information
dc.keywordsData sets
dc.keywordsHuman eye
dc.keywordsImage-based
dc.keywordsInterface usability
dc.keywordsLocal descriptors
dc.keywordsRegression model
dc.keywordsRobot vision
dc.keywordsSalient regions
dc.keywordsVisual information
dc.keywordsComputer vision
dc.keywordsEstimation
dc.keywordsHuman computer interaction
dc.keywordsHuman robot interaction
dc.keywordsInterfaces (computer)
dc.keywordsKnowledge management
dc.keywordsRegression analysis
dc.keywordsSignal processing
dc.keywordsVisual communication
dc.keywordsEye movements
dc.languageTurkish
dc.publisherIEEE
dc.sourceSIU 2010 - IEEE 18th Signal Processing and Communications Applications Conference
dc.subjectComputer engineering
dc.titleFixation count prediction for textural scenes
dc.title.alternativeDokusal görüntüler için odaklanma sayısının tahmini
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-1524-1646
local.contributor.authorid0000-0002-5916-3088
local.contributor.kuauthorSezgin, Tevfik Metin
local.contributor.kuauthorTümen, Recep Sinan
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files