Publication:
Two-body quantum absorption refrigerators with optomechanical-like interactions

dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
dc.contributor.kuauthorNaseem, Muhammad Tahir
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid1674
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T13:45:38Z
dc.date.issued2020
dc.description.abstractQuantum absorption refrigerator (QAR) autonomously extracts heat from a cold bath and dumps into a hot bath by exploiting the input heat from a higher temperature reservoir. QARs typically require three-body interactions. We propose and examine a two-body QAR model based upon optomechanical-like coupling in the working medium composed of either two two-level systems or two harmonic oscillators or one two-level atom and a harmonic oscillator. In the ideal case without internal dissipation, within the experimentally realizable parameters, our model can attain the coefficient of performance that is arbitrarily close to the Carnot bound. We study the efficiency at maximum power, a bound for practical purposes, and show that by using suitable reservoir engineering and exploiting the nonlinear optomechanical-like coupling, one can achieve efficiency at maximum power close to the Carnot bound, though the power gradually approaches zero as the efficiency approaches the Carnot bound. Moreover, we discuss the impact of non-classical correlations and the size of Hilbert space on the cooling power. Finally, we consider a more realistic version of our model in which we consider heat leaks that makes QAR non-ideal and prevent it to achieve the Carnot efficiency.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue3
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume5
dc.formatpdf
dc.identifier.doi10.1088/2058-9565/ab8d89
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02855
dc.identifier.issn2058-9565
dc.identifier.linkhttps://doi.org/10.1088/2058-9565/ab8d89
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85086716358
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3637
dc.identifier.wos539713100001
dc.keywordsQuantum absorption refrigerator
dc.keywordsQuantum thermodynamics
dc.keywordsOptomechanics
dc.languageEnglish
dc.publisherInstitute of Physics (IOP) Publishing
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9505
dc.sourceQuantum Science and Technology
dc.subjectQuantum science and technology
dc.subjectPhysics, multidisciplinary
dc.titleTwo-body quantum absorption refrigerators with optomechanical-like interactions
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9134-3951
local.contributor.authoridN/A
local.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
local.contributor.kuauthorNaseem, Muhammad Tahir
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9505.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format