Publication:
RegMT system for machine translation, system combination, and evaluation

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYüret, Deniz
dc.contributor.kuauthorBiçici, Ergün
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid179996
dc.contributor.yokidN/A
dc.date.accessioned2024-11-10T00:09:52Z
dc.date.issued2011
dc.description.abstractWe present the results we obtain using our RegMT system, which uses transductive regression techniques to learn mappings between source and target features of given parallel corpora and use these mappings to generate machine translation outputs. Our training instance selection methods perform feature decay for proper selection of training instances, which plays an important role to learn correct feature mappings. RegMT uses L2 regularized regression as well as L1 regularized regression for sparse regression estimation of target features. We present translation results using our training instance selection methods, translation results using graph decoding, system combination results with RegMT, and performance evaluation with the F1 measure over target features as a metric for evaluating translation quality.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doiN/A
dc.identifier.isbn9781-9372-8412-1
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994697685andpartnerID=40andmd5=6abf723d4ffa537a3ea7762a3f39c19e
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84994697685
dc.identifier.uriN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17197
dc.keywordsComputational linguistics
dc.keywordsComputer aided language translation
dc.keywordsFeature extraction
dc.keywordsMachine translation
dc.keywordsMapping
dc.keywordsNatural language processing systems
dc.keywordsQuality control
dc.keywordsInstance selection
dc.keywordsLearn+
dc.keywordsMachine translation systems
dc.keywordsParallel corpora
dc.keywordsRegression techniques
dc.keywordsSelection methods
dc.keywordsSource features
dc.keywordsSystem combination
dc.keywordsSystem evaluation
dc.keywordsTarget feature
dc.keywordsRegression analysis
dc.languageEnglish
dc.publisherAssociation for Computational Linguistics
dc.sourceWMT 2011 - 6thWorkshop on Statistical Machine Translation, Proceedings of the Workshop
dc.subjectComputer engineering
dc.titleRegMT system for machine translation, system combination, and evaluation
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7039-0046
local.contributor.authorid0000-0002-2293-2031
local.contributor.kuauthorYüret, Deniz
local.contributor.kuauthorBiçici, Ergün
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files