Publication:
Accelerating discovery of COFs for CO2 capture and H2 purification using structurally guided computational screening

dc.contributor.coauthorEruçar, İlknur
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorAksu, Gökhan Önder
dc.contributor.kuauthorHaşlak, Zeynep Pınar
dc.contributor.kuauthorKeskin, Seda
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T12:12:40Z
dc.date.issued2022
dc.description.abstractScreening of hypothetical covalent organic framework (hypoCOF) database enables to go beyond the current synthesized structures to design high-performance materials for CO2 separation. In this work, we followed a structurally guided computational screening approach to find the most promising candidates of hypoCOF adsorbents and membranes for CO2 capture and H2 purification. Grand canonical Monte Carlo (GCMC) simulations were used to evaluate CO2/H2 separation performance of 3184 hypoCOFs for pressure-swing adsorption (PSA) and vacuum-swing adsorption (VSA) processes. CO2/H2 adsorption selectivities and CO2 working capacities of hypoCOFs were calculated in the range of 6.13–742 (6.39–954) and 0.07–8.68 mol/kg (0.01–3.92 mol/kg), achieving higher values than those of experimentally synthesized COFs at PSA (VSA) conditions. Density functional theory (DFT) calculations revealed that the strength of hydrogen bonding between CO2 and the functional group of linkers is an important factor for determining the CO2 selectivity of hypoCOFs. The most predominant topologies and linker types were identified as bor and pts, linker91 (a triazine linker) and linker92 (a benzene linker) for the top-performing hypoCOF adsorbents, respectively. Molecular dynamics (MD) simulations of 794 hypoCOFs showed that they exceed the Robeson's upper bound by outperforming COF, zeolite, metal organic framework (MOF), and polymer membranes due to their high H2/CO2 selectivities, 2.66–6.14, and high H2 permeabilities, 9×105–4.5×106 Barrer. Results of this work will be useful to guide the synthesis of novel materials by providing molecular-level insights into the structural features of hypothetical COFs to achieve superior CO2 separation performance.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipERC-2017-Starting Grant
dc.description.sponsorshipResearch and Innovation Programme
dc.description.sponsorshipCOSMOS
dc.description.versionPublisher version
dc.description.volume427
dc.identifier.doi10.1016/j.cej.2021.131574
dc.identifier.eissn1873-3212
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03107
dc.identifier.issn1385-8947
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85112299132
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1181
dc.identifier.wos729988900005
dc.keywordsCO2 capture
dc.keywordsCovalent organic framework (COF)
dc.keywordsDensity functional theory (DFT)
dc.keywordsH2 purification
dc.keywordsMembrane
dc.keywordsMolecular simulations
dc.language.isoeng
dc.publisherElsevier
dc.relation.grantno756489
dc.relation.ispartofChemical Engineering Journal
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9768
dc.subjectEngineering
dc.titleAccelerating discovery of COFs for CO2 capture and H2 purification using structurally guided computational screening
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKeskin, Seda
local.contributor.kuauthorAksu, Gökhan Önder
local.contributor.kuauthorHaşlak, Zeynep Pınar
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Chemical and Biological Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9768.pdf
Size:
16.12 MB
Format:
Adobe Portable Document Format