Publication:
Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge

Thumbnail Image

School / College / Institute

Program

KU Authors

Co-Authors

Çivitci, Fehmi
Barış, İbrahim
Yaralıoğlu, Göksenin

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

In clinics, blood coagulation time measurements are performed using mechanical measurements with blood plasma. Such measurements are challenging to do in a lab-on-a-chip (LoC) system using a small volume of whole blood. Existing LoC systems use indirect measurement principles employing optical or electrochemical methods. We developed an LoC system using mechanical measurements with a small volume of whole blood without requiring sample preparation. The measurement is performed in a microfluidic channel where two fibers are placed inline with a small gap in between. The first fiber operates near its mechanical resonance using remote magnetic actuation and immersed in the sample. The second fiber is a pick-up fiber acting as an optical sensor. The microfluidic channel is engineered innovatively such that the blood does not block the gap between the vibrating fiber and the pick-up fiber, resulting in high signal-to-noise ratio optical output. The control plasma test results matched well with the plasma manufacturer's datasheet. Activated-partial-thromboplastin-time tests were successfully performed also with human whole blood samples, and the method is proven to be effective. Simplicity of the cartridge design and cost of readily available materials enable a low-cost point-of-care device for blood coagulation measurements.

Source

Publisher

Society of Photo-optical Instrumentation Engineers (SPIE)

Subject

Biochemistry and molecular biology, Optics

Citation

Has Part

Source

Journal of Biomedical Optics

Book Series Title

Edition

DOI

10.1117/1.JBO.22.11.117001

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

4

Views

5

Downloads

View PlumX Details