Publication:
Hydration-coupled allosteric locking of a phenol- and zinc-free bioactive insulin analog

dc.contributor.coauthorMatsuura, Hiroaki
dc.contributor.coauthorKawano, Yoshiaki
dc.contributor.coauthorAbhari, Zain
dc.contributor.coauthorKepceoglu, Abdullah
dc.contributor.coauthorTosha, Takehiko
dc.contributor.departmentDepartment of Molecular Biology and Genetics
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorAyan, Esra
dc.contributor.kuauthorDemirci, Hasan
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2025-12-31T08:21:45Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractModern insulin still depends on phenol and zinc to keep the hormone stable in vials and pumps, yet both additives slow absorption and raise safety concerns. We therefore asked a simple, clinically driven question: Can we stabilize the fast-acting T-state of insulin without phenol/zinc by exploiting pH-dependent water and anion binding? Using high-resolution synchrotron crystallography (1.4-1.76 angstrom), we solved novel designer and acid-stable cubic insulin structures from pH 2 to 6 in citrate-sulfate buffers and mapped solvent/anion contacts onto computational analyses. Across the acidic range, we uncovered a conserved 'water-anion clamp' centered on the Phe1B-Asn3B pocket that locks insulin in its bioactive T-conformation while neutralizing the protein's positive charge. This clamp: (i) removes the need for phenolic ligands, and (ii) keeps monomers soluble at high concentration. The structural blueprint we provide can guide formulation of phenol- and zinc-free, ultra-rapid insulin for subcutaneous pumps and high-strength cartridges, addressing unmet needs in intensive diabetes management. By clarifying how simple buffer anions and structured water can replace traditional preservatives, our work may link atomic-level detail to a practical therapeutic goal: faster, safer insulin delivery.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipSACLA Research Support Program for Graduate Students [2023B8058, 2023B2761]
dc.identifier.doi10.1111/febs.70283
dc.identifier.eissn1742-4658
dc.identifier.embargoNo
dc.identifier.issn1742-464X
dc.identifier.pubmed41124094
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-105019551008
dc.identifier.urihttps://doi.org/10.1111/febs.70283
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31609
dc.identifier.wos001597657500001
dc.keywordsBiophysics
dc.keywordsDiabetes
dc.keywordsElastic network models
dc.keywordsInsulin
dc.keywordsSynchrotron X-ray crystallography
dc.language.isoeng
dc.publisherWiley
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofFEBS Journal
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectBiochemistry & Molecular Biology
dc.titleHydration-coupled allosteric locking of a phenol- and zinc-free bioactive insulin analog
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameAyan
person.familyNameDemirci
person.givenNameEsra
person.givenNameHasan
relation.isOrgUnitOfPublicationaee2d329-aabe-4b58-ba67-09dbf8575547
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscoveryaee2d329-aabe-4b58-ba67-09dbf8575547
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files