Publication:
Mathematical model of causal inference in social networks

dc.contributor.coauthorSimsek, Mustafa
dc.contributor.coauthorDelibalta, Ibrahim
dc.contributor.coauthorKozat, Suleyman S.
dc.contributor.departmentDepartment of Media and Visual Arts
dc.contributor.kuauthorBaruh, Lemi
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Media and Visual Arts
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.yokid36113
dc.date.accessioned2024-11-09T23:08:01Z
dc.date.issued2016
dc.description.abstractIn this article, we model the effects of machine learning algorithms on different Social Network users by using a causal inference framework, making estimation about the underlying system and design systems to control underlying latent unobservable system. In this case, the latent internal state of the system can be a wide range of interest of user. For example, it can be a user's preferences for some certain products or affiliation of the user to some political parties. We represent these variables using state space model. In this model, the internal state of the system, e.g. the preferences or affiliations of the user is observed using user's connections with the Social Networks such as Facebook status updates, shares, comments, blogs, tweets etc./ Öz: Bu makalede makine öğrenmesi algoritmalarının sosyal medya esas gözlemlenemeyen durumun değiştirilmesi için gerekli algoritmalar dizayn ettik. Burada sistemin gizli iç durumu bir kişinin bir ürüne olan bağlılığını ya da siyasi parti bağlılık- larını temsil edebilir. Biz sistemin bu gizli iç durumunu durum uzay modeli kullanarak modelledik. Bu modellemede sistemin iç durumunu sosyal medya kullanıcısının tercih ya da bağlılık- larını, Facebook durum güncellemeleri, paylaşımları, yorumları, blogları ve tweet’lerini kullanarak elde ettik. Esas sistem tüketici tercihlerinden siyasi parti tercihlerine birçok alanda kullanılabilmesine rağmen biz sosyal medya kullanıcılarının tercihlerini modellemekle ilgileneceğiz.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/SIU.2016.7495952
dc.identifier.isbn9781-5090-1679-2
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84982833793&doi=10.1109%2fSIU.2016.7495952&partnerID=40&md5=ba9396c52c5092e8148e4f20dfe74bef
dc.identifier.scopus2-s2.0-84982833793
dc.identifier.urihttp://dx.doi.org/10.1109/SIU.2016.7495952
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9246
dc.keywordsBig data
dc.keywordsMachine learning
dc.keywordsSocial networks
dc.languageTurkish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.source2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings
dc.subjectEngineering
dc.subjectElectrical electronic engineering
dc.titleMathematical model of causal inference in social networks
dc.title.alternativeSosyal aǧlarda nedensel çıkarımın matematiksel modellenmesi
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-2797-242X
local.contributor.kuauthorBaruh, Lemi
relation.isOrgUnitOfPublication483fa792-2b89-4020-9073-eb4f497ee3fd
relation.isOrgUnitOfPublication.latestForDiscovery483fa792-2b89-4020-9073-eb4f497ee3fd

Files