Publication:
Investigation of microstructure, mechanical properties, and biocorrosion behavior of Ti1.5ZrTa0.5Nb0.5W0.5 refractory high-entropy alloy film doped with Ag nanoparticles

Placeholder

School / College / Institute

Organizational Unit
Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Even though metallic biomaterials have long been utilized as the key materials in biomedical applications due to their exceptional mechanical properties, corrosion and bacterial infection problems place a limit on their prolonged clinical applications. In order to overcome such problems, surface modification of the implants via exerting a durable and protective coating containing antibacterial agents is crucial. In this study, undoped and Ag-doped Ti1.5ZrTa0.5Nb0.5W0.5 refractory high-entropy alloy (RHEA) films with a thickness of 1.10 mu m were deposited on Ti6Al4V alloys through RF magnetron sputtering technique. The influence of the deposited film and embedding Ag nanoparticles on microstructure, mechanical properties, and electrochemical behavior was investigated. The microstructural findings revealed an amorphous structure with cauliflower-like morphology for deposited films. Coated specimens showed a significant improvement in surface mechanical properties such as elastic modulus and hardness. Doping Ag nanoparticles in the deposited film increased the roughness and contact angle of the specimens due to the evolution of Ag nanoparticles. Furthermore, electrochemical investigations revealed that undoped and Ag-doped deposited films remarkably improved the corrosion resistance of uncoated substrate; after the films deposition process, the corrosion rate of the specimens decreased 2.3-2.8 orders of magnitude compared to the uncoated substrate. Also, embedding Ag nanoparticles notably increased the polarization resistance of deposited films.

Source

Publisher

Elsevier

Subject

Chemistry, Physical, Materials science, Coatings and films, Physics, Applied, Physics, Condensed matter

Citation

Has Part

Source

Surfaces and Interfaces

Book Series Title

Edition

DOI

10.1016/j.surfin.2021.101617

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details