Publication:
RuO2 supercapacitor enables flexible, safe, and efficient optoelectronic neural interface

dc.contributor.coauthorUlgut, Burak
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorKaratüm, Onuralp
dc.contributor.kuauthorYıldız, Erdost
dc.contributor.kuauthorKaleli, Humeyra Nur
dc.contributor.kuauthorŞahin, Afsun
dc.contributor.kuauthorNizamoğlu, Sedat
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.researchcenterKoç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Health Sciences
dc.contributor.schoolcollegeinstituteGraduate School of Health Sciences
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid171267
dc.contributor.yokid130295
dc.date.accessioned2024-11-09T23:47:00Z
dc.date.issued2022
dc.description.abstractOptoelectronic biointerfaces offer a wireless and nongenetic neurostimulation pathway with high spatiotemporal resolution. Fabrication of low-cost and flexible optoelectronic biointerfaces that have high photogenerated charge injection densities and clinically usable cell stimulation mechanism is critical for rendering this technology useful for ubiquitous biomedical applications. Here, supercapacitor technology is combined with flexible organic optoelectronics by integrating RuO2 into a donor-acceptor photovoltaic device architecture that facilitates efficient and safe photostimulation of neurons. Remarkably, high interfacial capacitance of RuO2 resulting from reversible redox reactions leads to more than an order-of-magnitude increase in the safe stimulation mechanism of capacitive charge transfer. The RuO2-enhanced photoelectrical response activates voltage-gated sodium channels of hippocampal neurons and elicits repetitive, low-light intensity, and high-success rate firing of action potentials. Double-layer capacitance together with RuO2-induced reversible faradaic reactions provide a safe stimulation pathway, which is verified via intracellular oxidative stress measurements. All-solution-processed RuO2-based biointerfaces are flexible, biocompatible, and robust under harsh aging conditions, showing great promise for building safe and highly light-sensitive next-generation neural interfaces.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue31
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipEuropean Research Council (ERC) under the European Union [639846]
dc.description.sponsorshipRepublic of Turkey Ministry of Development The authors gratefully acknowledge the use of the facilities and services of the Koc University Surface Science and Technology Center (KUYTAM). The authors gratefully acknowledge use of the services and facilities of the Koc University Research Center for Translational Medicine (KUTTAM), funded by the Republic of Turkey Ministry of Development. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Ministry of Development. This project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement no. 639846). S.N. acknowledges the Turkish Academy of Sciences (TUBA-GEBIP) and Science Academy (BAGEP).
dc.description.volume32
dc.identifier.doi10.1002/adfm.202109365
dc.identifier.eissn1616-3028
dc.identifier.issn1616-301X
dc.identifier.scopus2-s2.0-85129851326
dc.identifier.urihttp://dx.doi.org/10.1002/adfm.202109365
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14054
dc.identifier.wos794048400001
dc.keywordsBiointerfaces
dc.keywordsNeural interfaces
dc.keywordsOrganic bioelectronics
dc.keywordsPhotostimulation
dc.keywordsSupercapacitors
dc.keywordsDeep brain-stimulation
dc.keywordsElectrical-stimulation
dc.keywordsRetinal prosthesis
dc.keywordsHydrous RUO2
dc.keywordsLight
dc.keywordsTechnologies
dc.keywordsDesıgn
dc.keywordsOxide
dc.languageEnglish
dc.publisherWiley-V C H Verlag Gmbh
dc.sourceAdvanced Functional Materials
dc.subjectChemistry
dc.subjectPhysical chemistry
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials science
dc.subjectPhysics
dc.subjectApplied physics
dc.subjectCondensed matter
dc.titleRuO2 supercapacitor enables flexible, safe, and efficient optoelectronic neural interface
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-7669-9589
local.contributor.authorid0000-0001-8086-3524
local.contributor.authorid0000-0002-4355-7592
local.contributor.authorid0000-0002-5083-5618
local.contributor.authorid0000-0003-0394-5790
local.contributor.kuauthorKaratüm, Onuralp
local.contributor.kuauthorYıldız, Erdost
local.contributor.kuauthorKaleli, Humeyra Nur
local.contributor.kuauthorŞahin, Afsun
local.contributor.kuauthorNizamoğlu, Sedat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files