Publication:
Predicting path loss distributions of a wireless communication system for multiple base station altitudes from satellite images

dc.contributor.coauthorGüntürk, Bahadır K.
dc.contributor.coauthorAteş, Hasan F.
dc.contributor.coauthorBaykaş, Tuncer
dc.contributor.departmentN/A
dc.contributor.kuauthorShoer, İbrahim
dc.contributor.kuprofilePhD Student
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:57:51Z
dc.date.issued2022
dc.description.abstractIt is expected that unmanned aerial vehicles (UAVs) will play a vital role in future communication systems. Optimum positioning of UAVs, serving as base stations, can be done through extensive field measurements or ray tracing simulations when the 3D model of the region of interest is available. In this paper, we present an alternative approach to optimize UAV base station altitude for a region. The approach is based on deep learning; specifically, a 2D satellite image of the target region is input to a deep neural network to predict path loss distributions for different UAV altitudes. The neural network is designed and trained to produce multiple path loss distributions in a single inference; thus, it is not necessary to train a separate network for each altitude.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipThis work was supported by TUBITAK Grant 215E324. sponding author is B.K.Gunturk (bkgunturk@medipol.edu.tr).
dc.identifier.doi10.1109/ICIP46576.2022.9897467
dc.identifier.isbn9781-6654-9620-9
dc.identifier.issn1522-4880
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85146729305&doi=10.1109%2fICIP46576.2022.9897467&partnerID=40&md5=dd853e6018a5073275c41cdb0ce0a772
dc.identifier.scopus2-s2.0-85146729305
dc.identifier.urihttp://dx.doi.org/10.1109/ICIP46576.2022.9897467
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15366
dc.identifier.wos1058109502113
dc.keywordsConvolutional neural networks
dc.keywordsDeep learning
dc.keywordsPath loss estimation
dc.keywordsUAV networks
dc.keywords3D modeling
dc.keywordsAntennas
dc.keywordsConvolutional neural networks
dc.keywordsDeep neural networks
dc.keywordsImage segmentation
dc.keywordsUnmanned aerial vehicles (UAV)
dc.keywordsVehicle to vehicle communications
dc.keywordsAerial vehicle
dc.keywordsConvolutional neural network
dc.keywordsLoss distribution
dc.keywordsLoss estimation
dc.keywordsPath loss
dc.keywordsPath loss estimation
dc.keywordsSatellite images
dc.keywordsUnmanned aerial vehicle network
dc.keywordsVehicle network
dc.keywordsBase stations
dc.languageEnglish
dc.publisherIEEE Computer Society
dc.sourceProceedings - International Conference on Image Processing, ICIP
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectEngineering
dc.subjectElectrical electronics engineering
dc.titlePredicting path loss distributions of a wireless communication system for multiple base station altitudes from satellite images
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.kuauthorShoer, İbrahim

Files