Publication:
Learning deep temporal representations for fMRI brain decoding

dc.contributor.coauthorFirat, Orhan
dc.contributor.coauthorAksan, Emre
dc.contributor.coauthorFatos T. Yarman
dc.contributor.departmentDepartment of Psychology
dc.contributor.kuauthorÖztekin, İlke
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.date.accessioned2024-11-10T00:12:43Z
dc.date.issued2015
dc.description.abstractFunctional magnetic resonance imaging (fMRI) produces low number of samples in high dimensional vector spaces which is hardly adequate for brain decoding tasks. In this study, we propose a combination of autoencoding and temporal convolutional neural network architecture which aims to reduce the feature dimensionality along with improved classification performance. The proposed network learns temporal representations of voxel intensities at each layer of the network by leveraging unlabeled fMRI data with regularized autoencoders. Learned temporal representations capture the temporal regularities of the fMRI data and are observed to be an expressive bank of activation patterns. Then a temporal convolutional neural network with spatial pooling layers reduces the dimensionality of the learned representations. By employing the proposed method, raw input fMRI data is mapped to a low-dimensional feature space where the final classification is conducted. In addition, a simple decorrelated representation approach is proposed for tuning the model hyper-parameters. The proposed method is tested on a ten class recognition memory experiment with nine subjects. Results support the efficiency and potential of the proposed model, compared to the baseline multi-voxel pattern analysis techniques.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume9487
dc.identifier.doi10.1007/978-3-319-27929-9_3
dc.identifier.eissn1611-3349
dc.identifier.isbn978-3-319-27929-9
dc.identifier.isbn978-3-319-27928-2
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-84955309019
dc.identifier.urihttps://doi.org/10.1007/978-3-319-27929-9_3
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17703
dc.identifier.wos376401400003
dc.language.isoeng
dc.publisherSpringer International Publishing Ag
dc.relation.ispartofMachine Learning Meets Medical Imaging
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectMathematical and computational biology
dc.subjectRobotics
dc.titleLearning deep temporal representations for fMRI brain decoding
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorÖztekin, İlke
local.publication.orgunit1College of Social Sciences and Humanities
local.publication.orgunit2Department of Psychology
relation.isOrgUnitOfPublicationd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isOrgUnitOfPublication.latestForDiscoveryd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isParentOrgUnitOfPublication3f7621e3-0d26-42c2-af64-58a329522794
relation.isParentOrgUnitOfPublication.latestForDiscovery3f7621e3-0d26-42c2-af64-58a329522794

Files