Publication:
Self-supervised monocular scene decomposition and depth estimation

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorGüney, Fatma
dc.contributor.kuauthorSafadoust, Sadra
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.researchcenterKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid187939
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T13:45:49Z
dc.date.issued2021
dc.description.abstractSelf-supervised monocular depth estimation approaches either ignore independently moving objects in the scene or need a separate segmentation step to identify them. We propose MonoDepthSeg to jointly estimate depth and segment moving objects from monocular video without using any ground-truth labels. We decompose the scene into a fixed number of components where each component corresponds to a region on the image with its own transformation matrix representing its motion. We estimate both the mask and the motion of each component efficiently with a shared encoder. We evaluate our method on three driving datasets and show that our model clearly improves depth estimation while decomposing the scene into separately moving components.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipTÜBİTAK 2232 Fellowship Program
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipMarie Sklodowska-Curie Individual Program
dc.description.sponsorshipKUIS AI Center
dc.description.versionAuthor's final manuscript
dc.formatpdf
dc.identifier.doi10.1109/3DV53792.2021.00072
dc.identifier.eissn2475-7888
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03324
dc.identifier.isbn978-1-6654-2688-6
dc.identifier.issn2378-3826
dc.identifier.linkhttps://doi.org/10.1109/3DV53792.2021.00072
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85125015151
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3654
dc.identifier.wos786496000062
dc.keywordsMonocular depth estimation
dc.keywordsStructure from motion
dc.keywordsScene decomposition
dc.keywordsMotion segmentation
dc.languageEnglish
dc.publisherIEEE Computer Society
dc.relation.grantno118C256
dc.relation.grantno898466
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10152
dc.source2021 International Conference on 3D Vision (3DV)
dc.subjectComputer science
dc.subjectEngineering
dc.subjectImaging science
dc.subjectPhotographic technology
dc.titleSelf-supervised monocular scene decomposition and depth estimation
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-0358-983X
local.contributor.authoridN/A
local.contributor.kuauthorGüney, Fatma
local.contributor.kuauthorSafadoust, Sadra
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10152.pdf
Size:
5.88 MB
Format:
Adobe Portable Document Format