Publication: Self-supervised monocular scene decomposition and depth estimation
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.department | N/A | |
dc.contributor.kuauthor | Güney, Fatma | |
dc.contributor.kuauthor | Safadoust, Sadra | |
dc.contributor.other | Department of Computer Engineering | |
dc.contributor.researchcenter | Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI) | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.yokid | 187939 | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T13:45:49Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Self-supervised monocular depth estimation approaches either ignore independently moving objects in the scene or need a separate segmentation step to identify them. We propose MonoDepthSeg to jointly estimate depth and segment moving objects from monocular video without using any ground-truth labels. We decompose the scene into a fixed number of components where each component corresponds to a region on the image with its own transformation matrix representing its motion. We estimate both the mask and the motion of each component efficiently with a shared encoder. We evaluate our method on three driving datasets and show that our model clearly improves depth estimation while decomposing the scene into separately moving components. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
dc.description.sponsoredbyTubitakEu | EU | |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TÜBİTAK) | |
dc.description.sponsorship | TÜBİTAK 2232 Fellowship Program | |
dc.description.sponsorship | European Union (EU) | |
dc.description.sponsorship | Horizon 2020 | |
dc.description.sponsorship | Marie Sklodowska-Curie Individual Program | |
dc.description.sponsorship | KUIS AI Center | |
dc.description.version | Author's final manuscript | |
dc.format | ||
dc.identifier.doi | 10.1109/3DV53792.2021.00072 | |
dc.identifier.eissn | 2475-7888 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR03324 | |
dc.identifier.isbn | 978-1-6654-2688-6 | |
dc.identifier.issn | 2378-3826 | |
dc.identifier.link | https://doi.org/10.1109/3DV53792.2021.00072 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85125015151 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/3654 | |
dc.identifier.wos | 786496000062 | |
dc.keywords | Monocular depth estimation | |
dc.keywords | Structure from motion | |
dc.keywords | Scene decomposition | |
dc.keywords | Motion segmentation | |
dc.language | English | |
dc.publisher | IEEE Computer Society | |
dc.relation.grantno | 118C256 | |
dc.relation.grantno | 898466 | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10152 | |
dc.source | 2021 International Conference on 3D Vision (3DV) | |
dc.subject | Computer science | |
dc.subject | Engineering | |
dc.subject | Imaging science | |
dc.subject | Photographic technology | |
dc.title | Self-supervised monocular scene decomposition and depth estimation | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-0358-983X | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Güney, Fatma | |
local.contributor.kuauthor | Safadoust, Sadra | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae |
Files
Original bundle
1 - 1 of 1